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Abstract 9 

Many cognitive processes involve transformations of distributed representations in neural populations, creating 10 

a need for population-level models. Recurrent neural network models fulfill this need, but there are many open 11 

questions about how their connectivity gives rise to dynamics that solve a task. Here, we present a method for 12 

finding the connectivity of networks for which the dynamics are specified to solve a task in an interpretable way. 13 

We apply our method to a working memory task by synthesizing a network that implements a drift-diffusion 14 

process over a ring-shaped manifold. We also use our method to demonstrate how inputs can be used to control 15 

network dynamics for cognitive flexibility and explore the relationship between representation geometry and 16 

network capacity. Our work fits within the broader context of understanding neural computations as dynamics 17 

over relatively low-dimensional manifolds formed by correlated patterns of neurons. 18 

 19 

Author Summary 20 

Neurons in the brain form intricate networks that can produce a vast array of activity patterns. To support 21 

goal-directed behavior, the brain has to adjust the connections between neurons so that network dynamics can 22 

perform desirable computations on behaviorally relevant variables. A fundamental goal in computational 23 

neuroscience is to provide an understanding of how network connectivity aligns the dynamics in the brain to the 24 

dynamics needed to track those variables. Here, we develop a mathematical framework for creating recurrent 25 

neural network models that can address this problem. Specifically, we derive a set of linear equations that 26 

constrain the connectivity to afford a direct mapping of task-relevant dynamics onto network activity. We 27 

demonstrate the utility of this technique by creating and analyzing a set of network models that can perform a 28 

simple working memory task. We then extend the approach to show how additional constraints can furnish 29 

networks whose dynamics are controlled flexibly by external inputs. Finally, we exploit the flexibility of this 30 

technique to explore the robustness and capacity limitations of recurrent networks. This network synthesis 31 

method provides a powerful means for generating and validating hypotheses about how task-relevant 32 

computations can emerge from network dynamics.  33 
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Introduction 34 

As it becomes possible for neuroscientists to simultaneously record ever-larger numbers of neurons [1], 35 

there is a need for theoretical frameworks and models to make sense of the resulting data and explain how 36 

behavior arises from the cooperation of many neurons. Rising to this challenge, the field of computational 37 

neuroscience has established that cortical neurons can and do perform distributed computations through 38 

population-level dynamics [2]. This finding necessitates further development of data analysis techniques and 39 

models that make population-level explanations and predictions. 40 

In studying behavior, an important aim is to develop models that incorporate a set of latent variables that 41 

can parsimoniously explain observable behavioral states. For instance, in decision-making tasks, drift-diffusion 42 

models have explained choice behavior in terms of a one-dimensional latent decision variable [3,4]. A more 43 

general framework that can accommodate behaviors with multiple latent variables is to consider a “latent task 44 

space” whose dimensions represent those variables (Fig. 1). Within this task space, one can specify (1) the 45 

subregion the latent variables occupy during the task (“latent task manifold”), and (2) the dynamics with which 46 

those variables evolve (“latent task dynamics”). 47 

To understand how patterns of neural activity give rise to behavioral variables, we need an analogous 48 

state space description of neural signals. Neural state space can be straightforwardly defined as a coordinate 49 

system in which the instantaneous firing rate of each neuron represents a dimension. Within this framework, the 50 

key to understanding the connection between neurons and behavior is to characterize the mapping between the 51 

behavioral and neural state spaces. Since the number of behavioral variables is typically much smaller than the 52 

number of underlying neurons, numerous studies have sought to link behavior to a set of “latent neural 53 

dimensions,” that create a lower-dimensional “latent neural space” during task performance [5,6]. While there is 54 

no guarantee of a one-to-one match between the latent neural dimensions and latent task dimensions, mounting 55 

evidence suggests the task manifold might be nonlinearly embedded in latent neural space as a “latent neural 56 

manifold” (Fig. 1) [7,8].  57 

 So far, this provides a descriptive account of how the low-dimensional geometry of neural activity can 58 

relate to task-relevant computations. However, manifolds are only abstract mathematical constructs that result 59 

from data analysis. Can we provide a generative account for how a population of neurons can support particular 60 
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manifold geometries? Specifically, can we create a model whose dynamics give rise to a neural manifold that is 61 

an arbitrarily embedded task manifold? 62 

To answer this, we turn to recurrent neural network (RNN) models. RNNs capture the recurrent, 63 

distributed nature of neural computation and are theoretically able to approximate any dynamical system [9]. 64 

Recent advances in machine learning and computing capability have made their use practical for a variety of 65 

applications in computational neuroscience. In some studies, RNNs are optimized to reproduce neural data 66 

[10,11]. Other studies take a task-oriented approach, training a network to perform a task and then attempting 67 

to find similarities between the RNN’s population dynamics and those of biological neurons recorded from an 68 

animal performing a similar task [12,13]. It is also possible to take a hybrid approach, training a network on a 69 

task with constraints that yield more brain-like solutions [14,15].  70 

All of these training approaches can be used to generate hypotheses about how networks solve tasks, 71 

as they are generally agnostic to any specific solutions [16]. Valuable insight can come from exploring the 72 

geometry of the neural manifolds created by such networks [17,18]. Additionally, one can apply analysis 73 

techniques from dynamical systems theory to characterize fixed points and other dynamical features that 74 

determine how network states evolve through time [19]. Overall, studying trained RNNs answers questions about 75 

the kinds of dynamics that can be used to solve tasks. We are concerned with exploring the inverse question: 76 

what kinds of networks are capable of implementing a given low-dimensional dynamical system (Fig. 1)? This 77 

requires a synthesis-based approach, which has been explored in some studies but is far from a settled question 78 

[20,21]. 79 

Here, we propose a novel method for creating RNNs that can map latent task manifolds to arbitrary neural 80 

manifolds. This allows us to create RNNs that can explore a range of dynamical solutions to tasks. We use our 81 

method to consider how inputs can be used to perform flexible computations, and explore how different 82 

embeddings of the task manifold in the neural space can affect network performance and connectivity.  83 

 84 

  85 
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 86 
Figure 1  Theoretical framework  Left: A hypothetical task involving latent variables. MIddle left: The evolution of these variables can be represented in 87 
a latent task space (gray rectangle). In this illustration, adapted from [22], the task might be a time interval production task, where the horizontal axis 88 
represents the relative elapsed time. The vertical axis represents the interval duration by a latent variable that specifies the speed of evolution in the 89 
horizontal direction, with faster speed (higher on the vertical axis; larger arrows) corresponding to shorter intervals.  Middle right: A nonlinear embedding 90 
of the task manifold in a neural state space. Right: An RNN models that establishes that nonlinear embedding.  91 
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Results 92 

Creating networks that embody task-relevant latent dynamics 93 

Our overarching objective is to examine the computational properties of RNNs whose state dynamics 94 

capture the evolution of latent variables in a task, which might be inferred from behavioral models. Since different 95 

tasks demand different latent-variable dynamics, as a first step we need a technique for creating RNNs whose 96 

state dynamics can be engineered. Here, we describe an approach that achieves this goal rapidly and flexibly. 97 

We start by considering a case in which the objective dynamics are known and we want to synthesize an 98 

RNN that can emulate those dynamics. We consider the class of RNNs in which the dynamics of the units are 99 

characterized by a differential equation as follows:    100 

 101 

In this equation, x is an N-dimensional vector specifying the activity of all N units in the network, 𝜏𝜏 is the 102 

time constant of the units, W is an N-by-N matrix specifying the synaptic weights between units, and I is a vector 103 

of inputs into each unit. The superscript T signifies transpose operation. The function  is a monotonic, 104 

differentiable nonlinearity that transforms the activity into a “firing rate.” Here, we use . 105 

We sought to create the objective dynamics in the RNN by matching the local partial derivatives of the 106 

network to that of the objective dynamics. In vector calculus, the matrix of local partial derivatives is known as 107 

the Jacobian. As such, we have to adjust W so that the Jacobian of the network, denoted 𝐽𝐽𝑅𝑅𝑅𝑅𝑅𝑅, would match the 108 

Jacobian of the objective dynamics, denoted 𝐽𝐽𝑜𝑜𝑜𝑜𝑜𝑜. For the network, 𝐽𝐽𝑅𝑅𝑅𝑅𝑅𝑅 can be written as follows: 109 

 110 

with diag indicating a matrix with a specified vector along its diagonal and zeros everywhere else. The matrix  111 

is the identity matrix of size N. 112 

To adjust RNN dynamics along different dimensions, we used eigendecomposition to factorize 𝐽𝐽𝑅𝑅𝑅𝑅𝑅𝑅 to a 113 

set of eigenmodes. Each eigenmode is characterized by an eigenvector, which specifies a single dimension 114 

within the state space, and a corresponding eigenvalues that quantifies the rate and direction of movement along 115 
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that dimension [23]. If we collect the N eigenvectors within a matrix U and the eigenvalues within a diagonal 116 

matrix 𝛴𝛴, 𝐽𝐽𝑅𝑅𝑅𝑅𝑅𝑅can be factorized as 𝑈𝑈𝛴𝛴𝑈𝑈𝑇𝑇. After substituting 𝐽𝐽𝑅𝑅𝑅𝑅𝑅𝑅 with this eigendecomposition and some linear 117 

algebra, we can rewrite (2) as follows: 118 

 119 

 In principle, we can find W by replacing U and  by their corresponding values based on , and solve 120 

for W. For example, if we are defining a point attractor, we would specify all eigenvalues to be negative, meaning 121 

that perturbations away from the point will decay. However, we have to address one problem beforehand: 122 

usually, the dimension of  and  do not match: the dimensionality of  is specified by the number of 123 

units (N), whereas the dimensionality of , denoted d, is determined by the number of latent variables needed 124 

to perform a given task, and d has to be smaller than N. From a geometrical perspective, this means that W 125 

should be adjusted such that the network is low-rank; i.e., activity must reside within a d-dimensional subspace 126 

associated with the latent dynamics.  127 

Since the number of task-relevant latent variables are usually far smaller than the size of the network [8], 128 

 can only be used to constrain the first d eigenmodes in the state space. To handle the other dimensions, we 129 

employ a simple trick: we set the eigenvalues of the remaining N-d dimensions to a negative value (−1/𝜏𝜏). This 130 

serves two purposes. First, it ensures that activity remains within the desired d-dimensional subspace (i.e, activity 131 

along other dimensions would decay), and second, it allows us to ignore these dimensions and rewrite (3) for 132 

the d eigenmodes associated with :  133 

 134 

where  contains the d eigenvectors of  embedded in an N-dimensional space (N-by-d),  contains the 135 

corresponding eigenvalues, and the identity matrix is now of size d.  This equation can be further simplified to 136 

the following form: 137 

 138 
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Since  is d-dimensional, equation 5, which is written for a single point in the state space (subscript 139 

), provides d linear constraints on the connectivity matrix. However, we can rewrite (5) for  some number m 140 

points in the state space for which  is defined, and create a system of linear equations to solve for the  141 

unknowns in W: 142 

 143 

 Using this method, which we refer to as Embedding Manifolds with Population-level Jacobians (EMPJ), 144 

we can create an RNN whose activity is confined to a desired manifold and whose slow dynamics over that 145 

manifold are fully specified by some objective dynamics (see Methods for full details).  146 

 147 

A ring attractor with discrete fixed points 148 

To examine the utility of EMPJ, we attempted to construct a ring attractor that contains a set of discrete 149 

fixed points. This choice was motivated by the fact that (1) ring attractors have long served as a canonical 150 

example of constrained dynamics [24], and (2) discrete fixed points can be used introduce error-correcting 151 

dynamics over the ring. Such semi-discrete ring-attractor dynamics have been implicated in the study of human 152 

visual working memory of color [25]. When humans report of a previously seen color after a delay over a color 153 

wheel (Fig. 2a, left), their responses exhibit biases that can be captured by fixed-point dynamics over a ring 154 

attractor; i.e, with longer delays, the reported color drifts slowly over the color wheel toward a stable set of colors. 155 

This behavior can be captured by a one-dimensional drift-diffusion model over the ring that specifies the 156 

relaxation dynamics of a single latent variable associated with the internal memory of the color. This behavior of 157 

the model depends on two key parameters: a drift function that specifies the average movement direction and 158 

speed as a function of position on the ring (Figure 2a, middle), and the noise that causes the internal state to 159 

diffuse (see Methods). 160 

Accordingly, we need to construct an RNN whose activity resides on an embedded ring manifold, and 161 

whose activity dynamics matches that of a desired drift-diffusion model. For this example, we used a sinusoidal 162 

drift function with a period of 60 degrees so that the ring contained six equidistant and alternating stable and 163 

unstable fixed points (Figure 2b). The number of fixed points can be changed by changing the frequency of the 164 
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drift function. Next, we need to create a matching ring manifold in the RNN. We can achieve this in five steps. 165 

First, we define an arbitrary 2D subspace (plane) within the state space that would contain the desired ring 166 

manifold. Second, we choose a set of points along the ring to construct the equations in (6). We will refer to 167 

these as setpoints. Third, for every setpoint, we set the eigenvalue associated with radial eigenvector to a 168 

negative constant (see Methods for complete details). This ensures that the embedded ring is stable. Fourth, we 169 

must specify the relaxation dynamics over the ring. To do so, for every setpoint, we set the eigenvalues 170 

associated with the tangential eigenvector to the derivative of the drift function. This ensures that  over the 171 

embedded ring is locally matched to  derived from the drift function. Finally, we solve the linear equations in 172 

(6) to derive the W, for the RNN that satisfies these constraints. For now, we ignore inputs and consider the RNN 173 

an autonomous dynamical system. 174 

To test the solution, we initialized the network at various states close to the ring in the state space and 175 

allowed the state to evolve according to the imposed relaxation dynamics. As expected, the network state quickly 176 

moved onto the ring and evolved towards the nearest stable fixed points (Fig. 2b, left). Moreover, the state 177 

dynamics over the ring indicated that the speed of the drift in the state space closely matched the speed predicted 178 

from the drift function (Fig. 2b, right).  179 

We also tested drift functions with different number of fixed points, non-periodic drift functions, and drift 180 

functions with a non-zero mean. In all cases, EMPJ was able to construct an RNN that would accurately capture 181 

the desired dynamics. The case for a drift function with a non-zero mean requires a non-trivial adjustment to 182 

what we discussed previously. In general, because eigenvalues are set according to the derivative of the drift 183 

function, EMPJ’s default solution is a network that corresponds to a drift function with a mean of zero. However, 184 

a baseline can be added straightforwardly by an additional constraints to equation (6) that define where fixed 185 

points should be located; i.e., where the drift function crosses zero (see Methods) (Fig. 1c). These examples 186 

highlight the possibility of using EMPJ as a simple and rapid method for constructing RNN that can express a 187 

variety of low-dimensional latent dynamics.  188 
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 189 

Figure 2  Semi-discrete representations for working memory a) (left) We imagine a task where the goal is to remember a continuous, periodic, one-190 
dimensional variable (such as color from a wheel). (middle) A possible dynamical solution to the task. We have superposed a plot of the drift function in 191 
polar coordinates on top of the ring-shaped manifold corresponding to the subject’s mental representation of color. A positive drift means clockwise 192 
movement on the ring, while negative means counterclockwise. Wherever the drift function crosses zero, there is a fixed point, which is either stable or 193 
unstable depending on the slope of the drift function at that point. (right) We wish to create a network that implements this dynamical solution. b) (left) First 194 
two principal components of RNN activity, initialized from points close to the ring attractor (blue). Without noise, neural trajectories go towards stable fixed 195 
points (red). (right) The drift of the RNN working memory representation compared with the target drift function used to create the RNN. c) Five different 196 
networks have drift functions that are shifted from mostly clockwise (red) motion to counter-clockwise (blue) motion. (inset) This is accomplished by 197 
constraining the location of fixed points. 198 

 199 

Comparison of RNN with drift-diffusion model   200 

 Our implementation of a slow drift over a ring-shaped manifold is based on the assumption that a robust 201 

circuit for working memory requires corrective dynamics to counter the effect of noise. However, we have so far 202 

only analyzed networks under noiseless conditions. We now ask how the system responds to noise by comparing 203 

its behavior to a one-dimensional drift-diffusion model (DDM) and investigating whether the semi-discrete 204 

representation we have created improves the working memory of the system. 205 
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 For our analysis, we will add noise to the network through input vectors that are aligned with the plane in 206 

which the ring sits. We will refer to this kind of noise as “external noise.” The idea that diffusion might be driven 207 

by noise introduced through input channels is supported by physiological evidence [26]. An alternative would be 208 

introducing noise independently to every unit in the network, but the projection of the variance of a high-209 

dimensional noise vector onto the tangent vector of the ring is inversely proportional to the size of the network, 210 

so this “internal noise” vector would need to be quite large to cause the same amount of diffusion as external 211 

noise. In simulations, we found that adding such large vectors caused unpredictable network behavior, 212 

presumably because the perturbations due to noise brought the network’s state so far away from the ring. By 213 

calculating the relationship between external noise in the RNN and noise in the DDM (see Methods), we were 214 

able to directly compare the behavior of the two models. We found that the distributions of estimates of the initial 215 

position on the ring were identical. This was true whether there were two fixed points on the ring or infinitely 216 

many (Fig. 3a). 217 

 218 

 219 

Figure 3  Comparison of bias-variance trade-off a) (top) Simulations of a drift-diffusion model (DDM), given a specified number of stable fixed points in 220 
a sinusoidal drift function. Initial values are on the x-axis, while the estimated values after 15 seconds of simulation time are on the y-axis. Each initial 221 
condition was simulated 100 times. (bottom) The same simulations in RNNs built to replicate the DDM. The RNNs were given correlated noise confined 222 
to the same plane as the ring-shaped manifold. The strength of noise was made to match that in the DDM. b) Average bias and variance for the DDM (top) 223 
and RNN (bottom) for various numbers of fixed points. 224 
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 225 

We further compared the results by computing the average bias and variance of the distributions. Since 226 

the overall mean squared error of an estimator is the sum of its variance and bias squared, this was also a way 227 

of verifying that our assumptions about the optimality of semi-discrete representations. We found that the rings 228 

with only two fixed points were very biased after 15 seconds of simulation time, since estimates were clustered 229 

around those two points. However, increasing the number of fixed points decreased both the bias and variance, 230 

leading to an overall reduction in error. The lowest total average error occurred with six fixed points. After that, it 231 

became easier for noise to push the state in between basins of attraction, and even though bias continued to 232 

decrease there were increases in variance that caused overall error to increase. The curves in the bias-variance 233 

plots are almost identical for the DDM and RNN simulations, indicating that the RNNs are accurately 234 

implementing the DDMs for which they were engineered. 235 

 236 

Input control of network dynamics 237 

So far, we have demonstrated the ability of our method to create an RNN that implements an autonomous 238 

dynamical system that performs a computation. In this case, that computation is maintaining a semi-discrete 239 

representation of a variable. But what if we wish to add some flexibility to the network’s dynamics? For example, 240 

it could be useful to adjust the strength of the drift function in response to different levels of noise being added 241 

to the network. If there is a high level of noise being added to the network, it would make sense to increase the 242 

amplitude of the drift function. With very low noise, it would make more sense to have a slower drift. 243 

One possible solution to the problem of creating more flexible computations is the addition of inputs to 244 

the RNN. The most common way to do this is to simply project the inputs into the population using linear weights. 245 

In this case, inputs are often classified as either “sensory,” providing transient information directly relevant to 246 

completing a task, or “contextual,” providing a cue about what kind of task needs to be done. Contextual inputs 247 

are typically modeled as tonic inputs that take a certain value for the duration of the task [12,27]. In a recent 248 

study, the geometry of neural trajectories and RNN modeling suggested that tonic inputs might be used by 249 

cortical circuits to flexibly switch between different behavioral regimes [18]. How can we understand the 250 
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computational function of these inputs from a dynamical systems perspective, and can we use that 251 

understanding to create networks that flexibly switch between task contexts?  252 

In the case of adjusting the strength of the drift function in the example working memory task, we consider 253 

the role that inputs appear to play in modulating the speed of neural trajectories [13,18]. We continue with the 254 

same working memory task as before, but assume now that we wish to use tonic inputs to modulate the strength 255 

of the corrective drift. In other words, we want the amplitude of the sinusoidal drift function to increase with a 256 

tonic input, which will be introduced according to equation (1) by projecting the input value onto the neural 257 

population (Fig. 4a). 258 

We begin with our method as described so far: for a set of points on a manifold, we define the first few 259 

eigenvalues and eigenvectors of the Jacobian to give the desired recurrent dynamics along a ring-shaped 260 

manifold. We will refer to the space spanned by these eigenvectors as the “recurrent subspace,” illustrated by 261 

the colored planes in Figure 4b. We then add another dimension to the Jacobian eigendecomposition, such that 262 

the eigenvectors are the same as the vector of weights used to project the input onto the population. This 263 

dimension can be referred to as the “input subspace.” We also specify the associated eigenvalues to be a 264 

negative constant. This means that the projection of the system’s state along the input subspace will 265 

exponentially decay (see Methods for further details). Therefore, a tonic input will push the system up to some 266 

point where it is canceled out by the exponential decay of activity along the input subspace (Fig. 4b). For constant 267 

inputs, the system will reach an equilibrium point where it is stable. Importantly, we can then alter the dynamics 268 

in the recurrent subspace so they are parametrized by the position in the input subspace. In this example, we 269 

scale the eigenvalues that control the drift function by their position along the input subspace, so that the drift 270 

function has zero amplitude when there is no input and has a high amplitude with a high input. 271 

 After incorporating the input into the EMPJ framework, we performed a similar simulation as before, 272 

initializing the resulting RNN at various points around the ring manifold and at levels in the input subspace 273 

corresponding to certain inputs. We were able to control the speed of the drift function as desired: there was 274 

very slow drift without any input, and fast drift when there were high inputs (Fig. 4c).   275 

 276 
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277 

Figure 4  Input control of speed a) A one-dimensional input, which will be used to control the speed of dynamics, is projected by an “input vector” into 278 
the neural population. In subsequent panels, blue colors indicate low input, while red indicate higher input. b) We define the input vector to be orthogonal 279 
to the plane containing the ring. Using our method, the network’s dynamics are set such that a constant input increases the RNN’s position along that axis 280 
until it is canceled out by decay in the same direction. At that point, the system is stable in a new plane, and the dynamics can be specified in that subspace 281 
(in this case, to go faster around the ring). c) (left) PCA of network activity, initialized at various points around the ring and for different input conditions. 282 
Black and white dots illustrate start and stop of one initialization, while colors indicate neural trajectories given a particular input level. As expected, tonic 283 
inputs confine the dynamics to different rings. (right) Measured drift functions for various inputs closely align with the target drift functions. 284 

 285 

Rings embedded in high-dimensional space 286 

Next, we explore the ability of EMPJ to embed rings in more than two dimensions, which will enable us 287 

to explore representations between two extremes. At one limit of dimensionality, units have independent tuning 288 

curves that fully determine their responses to a stimulus (Fig. 5a, left). In this case, the dimensionality of the 289 

system cannot be reduced: we have a ring embedded in the same number of dimensions as there are units in 290 

the network. On the other hand, we have rings in only two dimensions, where the tuning curves of units will 291 

consist of weighted sums of a sine and cosine. Here, we might say that there are two “latent tuning curves” that 292 

project into the population. We can explore rings of intermediate dimensionality by adding other latent tuning 293 

curves aligned with other population modes (Fig. 5a, right). This can be thought of as “bending” the ring out of 294 

its original plane (Fig. 5b). In our simulations, these bends consist of von Mises functions, which are evenly 295 

spaced around the ring and have widths controlled by the parameter κ (see Methods for full details). To keep the 296 

overall population activity constant, we normalize these latent tuning curves so that the ring lies on a 297 

hypersphere. The total number of latent tuning curves provides the embedding dimension of the ring. The tuning 298 
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curves of single units are then made of linear combinations of these latent tuning curves (Fig. 5a, right), and will 299 

demonstrate the mixed selectivity that is a hallmark of cortical representations [28]. 300 

 We find that the embedding dimension fully determines the rank of the connectivity matrix for the RNN. 301 

No matter what kinds of dynamics occur over the ring, the connectivity matrix only ever has the same number of 302 

non-zero eigenvalues as there are embedding dimensions (Fig. 5c). This can be explained by the fact that the 303 

linear constraints we used to build our networks occupy the same subspace. The eigendecomposition of the 304 

weight matrix reveals its true function: one set of eigenvectors projects the network state into a low-dimensional 305 

subspace, the eigenvalues scale it along the relevant dimensions, and the inverse eigenvectors project it back 306 

into the full space. Since Equation 1 includes a “membrane leak” term, activity in all other dimensions decays 307 

exponentially. 308 

 Another finding, unrelated to the RNNs but relevant to questions about optimal representations, is that 309 

both the width and number of latent tuning curves affect the total length of the ring manifold (Fig. 5d). Total ring 310 

length is a relevant metric to consider, since it means that the distance along the ring between states is greater, 311 

making it easier to discriminate between them and reducing the effects of noise. For broad tuning, corresponding 312 

to low values of κ, increasing the embedding dimension results in a shorter ring. Intuition for this result can come 313 

from the three-dimensional case illustrated in Fig. 5b. An infinitely broad von Mises function consists of a constant 314 

value, which would turn the “bend” in the x1 dimension into an offset from the sphere’s equator. Now the ring 315 

would simply lie at a higher “latitude” on the sphere, and would be shorter. Conversely, increasing the embedding 316 

dimension of the ring when the tuning curves are relatively narrow will monotonically lengthen the ring. This is 317 

consistent with the theoretical result [29] that narrow tuning curves densely tiling the stimulus space optimizes 318 

the Fisher information of a population of neurons. Our result here, combined with the previous theory, suggests 319 

that there may be pressure on a neural population to have many narrow latent tuning curves, though we have 320 

not yet addressed the dynamic stability of these ring shapes. 321 

 322 
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 323 

Figure 5  Embedding rings in higher dimensions a) In a framework where tuning curves are independent (left), single-unit (SU) responses depend 324 
solely on how much the stimulus overlaps with SN tuning curves. We consider a case (right) where SN responses are the result of random projects of a 325 
lower-dimensional set of latent tuning curves. b) View of a ring over a 3D slice of a hypersphere, showing the ring bending out of the plane created by 𝑥𝑥𝑛𝑛−1 326 

and 𝑥𝑥𝑛𝑛into the dimension denoted by 𝑥𝑥1. The ring’s excursions into other dimensions are not visible. c) The eigenvalues of the RNN weight matrix, for a 327 
ring lying in a 2D plane (left, top) and for a ring with excursions into five additional dimensions (left, bottom). The rank of the RNN weight matrix, determined 328 
by the number of non-zero eigenvalues, matches the ring’s embedding dimension. d) The total ring length as a function of the embedding dimension, for 329 
different widths of the latent tuning curves (denoted κ). 330 

 331 

Limitations of RNN dynamic capacity 332 

 To address questions about the dynamic stability of rings with higher embedding dimensions, we must 333 

first define an appropriate error metric. Measuring the drift of the network state at various initial conditions on the 334 

ring, as done in previous figures to see whether the ring implemented the correct drift function, will not suffice, 335 

since trajectories might fly off the ring after some time. We therefore introduce a metric referred to “deviation,” 336 

illustrated in Fig. 6a. At various points in time for an RNN trajectory, we decode the current value of  on the ring, 337 

and then calculate what the RNN state should be given that value. The Euclidean distance between the RNN’s 338 

actual state and where it should be on the ring provides the deviation at that point in time. We can sample the 339 

deviation over time and from many initial conditions to get an average measure of how well the RNN 340 
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approximates the desired dynamics over the ring. One result of this analysis is the finding that the network must 341 

be sufficiently large (Fig. 6b). Our method thus allows us to find the smallest network size capable of creating 342 

dynamics over a particular ring. 343 

 We next examine the limits introduced by the geometry of the ring and the demands of the drift function. 344 

First, we ask whether there is a connection between the embedding dimension and the number of fixed points. 345 

Are there symmetries in ring structure than can be exploited to make certain drift functions easier? We find that 346 

placing the fixed points of the drift function at the peaks of the latent tuning curves makes the RNN activity more 347 

stable on the ring (Fig. 6c). Specifically, this means matching the number of fixed points with the number of 348 

“bends” in the ring, which is two less than the embedding dimension. 349 

Taking this finding into consideration, we examine the effect of tuning curve width given matched fixed 350 

points and embedding dimension. We find that there are optimal values of κ that depend on the other parameters 351 

(Fig. 6d). As the embedding dimension increases, the optimal κ also increases, meaning that higher-dimensional 352 

rings require narrower tuning curves for stability. However, this is only true up to a point: making the latent curves 353 

too narrow makes the networks less stable. 354 

With these findings, we can make some normative statements. From an information theory perspective, 355 

we might assume that higher-dimensional rings with narrower tuning curves are better for encoding a stimulus 356 

value. However, this configuration might make it difficult to create stable dynamics. We have found that the most 357 

dynamically stable rings have symmetry between the number of fixed points and the embedding dimension, and 358 

the latent tuning curves forming those rings have an optimal width. 359 
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 360 

Figure 6  Constraints on network performance a) Illustration of the deviation metric used to quantify network performance (top). Two examples of a 361 
network with high deviation (bottom left) and a network with low deviation (bottom right). b) Influence of number of units in the network on the deviation 362 
from the ring. For all networks simulated here, embedding dimension was 6 and the number of fixed points was 4. c) Deviation as a function of number 363 
of fixed points and embedding dimension. Darker shading indicates higher deviation d) Logarithmic plot of deviation as a function of latent tuning curve 364 
width, assuming embedding dimension and number of fixed points are matched.  365 
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Discussion 366 

We have developed a method, EMPJ, for synthesizing RNNs that perform computations by implementing 367 

specific task-relevant dynamics. EMPJ works by specifying local constraints on the dynamics, resulting in the 368 

desired global behavior. The key innovation in EMPJ is that it derives the network connectivity directly from a set 369 

of linear equations given by those constraints. We demonstrated the utility of this technique in the context of a 370 

simple working memory task in which the network dynamics were specified by a drift diffusion process over a 371 

ring-shaped manifold. The flexibility of EMPJ enabled us to implement a variety of drift functions over the ring 372 

accurately.  For example, we were able to create networks whose dynamics established drift functions with error-373 

correcting properties in the presence of noise. 374 

Moreover, we used EMPJ to generate networks whose dynamics can be flexibly adjusted by an input. 375 

This opens the possibility of creating models of neural systems that perform context-dependent sensorimotor 376 

and cognitive computations. We used this approach to model how thalamo-cortical inputs might adjust the speed 377 

with which cortical dynamics evolve, as has been suggested by recent findings [13], [30]. However, unlike end-378 

to-end training methods [13], EMPJ enabled us to straightforwardly synthesize RNNs in which an input drove 379 

the system to different regions of state space with different drift functions. Although we focused on simple control 380 

via tonic inputs, future work should be able to extend EMPJ to incorporate richer time-varying inputs, such as 381 

pulses or oscillations, to accommodate more sophisticated control mechanisms. 382 

One question that deserves further consideration is how to choose appropriate target dynamics for the 383 

network. In our case, we were able to engineer the target dynamics based on the computational demands of the 384 

task we considered. In general, it might be difficult to engineer such simple solutions for complex tasks whose 385 

computations involve higher-dimensional manifolds. This problem may be solved by integrating our method with 386 

other techniques that furnish the target dynamics. One option would be using Jacobians estimated from neural 387 

spiking data recorded from an animal trained to solve the task [31]. Another option is to take Jacobians from an 388 

auxiliary artificial neural network that contains task-relevant dynamics [32]. These methods would generate target 389 

dynamics from a system able to solve the task, which could then be used with EMPJ to directly engineer an RNN 390 

with those dynamics.   391 
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As described, EMPJ provides the means for embedding a task parameter manifold directly into an RNN. 392 

The approach is similar to that described by the Neural Engineering Framework (NEF), which also matches 393 

latent task dimensions to latent neural dimensions and creates a recurrent weight matrix that produces the 394 

desired transformations of neural representations [20]. One point of contrast is that EMPJ only requires knowing 395 

local linear approximations of dynamics, while the NEF involves specifying the global dynamics equations. This 396 

could be advantageous for if the global equations are unknown, but might be disadvantageous if the dynamics 397 

are fast enough that linear approximations no longer work. Additionally, population manifolds created through 398 

EMPJ are inherently designed to be stable, since we specify that off-manifold activity rapidly decays. The NEF 399 

does not use Jacobian matrices, so the local stability is not as well-defined over the manifold. Our approach also 400 

makes it easier to create networks for which the latent task manifold is embedded nonlinearly in the neural 401 

manifold. Given these differences, we present EMPJ as a complementary technique to the NEF, as it shares the 402 

same underlying principles. 403 

EMPJ can also be contrasted with other RNN synthesis methods. For example, one might test the degree 404 

to which the connectivity matrix resulting from EMPJ matches predictions from other approaches that relate 405 

connectivity to low-dimensional dynamics. Two recent examples of such work are based on mean field theory 406 

[21] and distributions of network motifs [33]. Generally, the connectivity matrices found through EMPJ may be 407 

different from those found through mean-field methods. This is possibly because mean-field methods rely on the 408 

properties of the distribution from which the connectivity matrix weights are drawn, while the weights found 409 

through EMPJ are less constrained. As a result, we have been able to use EMPJ to create RNNs with low-410 

dimensional dynamics that are difficult to achieve using mean-field methods (not shown). Further study could 411 

elucidate the principles by which connectivity constrains dynamics.  412 

 A larger goal of analyzing and synthesizing RNNs is to gain a deeper understanding of the relationship 413 

between manifold geometry, complexity of dynamics, and network characteristics. EMPJ makes it easy to 414 

generate and test hypotheses about those properties. For example, we used EMPJ to assess how the 415 

dimensionality of the manifold and the organization of fixed points impact the ease of implementing different drift 416 

functions. Future work could extend this work to further investigate general properties of network models such 417 

as capacity [34] and manifold smoothness [35].   418 
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Methods 419 

Additional method details 420 

 The first step in EMPJ is to define some number of setpoints on a manifold. The exact number does not 421 

matter, but the sampling should be sufficiently dense that it is possible to interpolate the drift function between 422 

points. The next step is to define both the direction and magnitude of the target vector field over the manifold. 423 

This is referred to as the “drift function” previously. The gradient of this vector field is used to define the Jacobian 424 

at every point. 425 

 The next step is to project the points on the manifold and the vector field gradient into a high-dimensional 426 

space. In our method, we accomplish this by performing the Gram-Schmidt process on a set of Gaussian vectors 427 

to obtain our “projection vectors.” These vectors can be scaled by some amount to take advantage of the full 428 

dynamic range of the network units. For example, we find that scaling these projection vectors so that only a few 429 

of the single units ever get close to saturation works well.  430 

 Once the Jacobian  is determined at each setpoint, we stack the constraints given by equation (4) to 431 

produce equation (6), creating a linear equation of the following form: 432 

 433 

Note that 𝜉𝜉 denotes a matrix of white noise (𝜎𝜎 = 10−6 in all cases unless noted otherwise)  the same size as A, 434 

which helps to prevent overfitting and creates a more robust solution. Thus, by placing local constraints on the 435 

connectivity matrix, we find a connectivity matrix for a network that has the desired global behavior.   436 

For solving the linear equation, we used the least-squares solver from the NumPy linear algebra library. 437 

 438 

Ring attractor example 439 

For the semi-discrete ring attractor, we first created a ring by taking the cosine and sine of 64 evenly 440 

spaced values of a parameter 𝜃𝜃 between 0 and 2𝜋𝜋. This yields a list of coordinates on a unit circle. We then 441 

projected those points into a 400-dimensional space using two projection vectors, as described in the previous 442 

section. The projection vectors were each scaled to have a magnitude of 10. 443 

Next, we needed to define the Jacobian at each setpoint. Since the ring is a locally 1-dimensional object, 444 

we only need to worry about defining one eigenvector and corresponding eigenvalue at each point. We obtained 445 
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the eigenvectors by computing the tangent vector to the ring, using the fact that the tangent vector for a ring at 446 

a point specified by the coordinates (cos𝜃𝜃, sin𝜃𝜃) has the direction (-sin𝜃𝜃, cos𝜃𝜃). The eigenvalues were determined 447 

by taking the derivative of a drift function of the form  f(𝜃𝜃) = -cos(𝜔𝜔𝜃𝜃), where the frequency 𝜔𝜔 is equal to the 448 

number of stable fixed points around the ring. Thus, the eigenvalues were determined by the equation 𝜆𝜆(𝜃𝜃)= 449 

𝜔𝜔sin=(𝜔𝜔𝜃𝜃). 450 

To measure how well the network matched the desired drift function, we initialized the network at points 451 

around the ring and measured how the decoded values of 𝜃𝜃 changed during the first time step of simulation. To 452 

decode the value, we used least squares linear regression to decode the cosine and sine of 𝜃𝜃, which we used 453 

to reconstruct 𝜃𝜃. In other words, we solved for the matrix D in the equation 8 for known values of . 454 

 455 

 456 

  457 

 458 

Additional constraints 459 

Since the Jacobian eigenvalues specify the derivative of the drift function, there is an integration constant 460 

that is not accounted for when obtaining the actual drift function. We can impose constraints on this value by 461 

constraining where the drift function crosses zero. Since zero-crossings of the drift function are by definition fixed 462 

points, we can do this by setting equation (1) equal to zero, which gives the following:   463 

 464 

where 𝑥𝑥𝑓𝑓 refers to the fixed point. This provides another linear constraint, which can be added to the list of other 465 

constraints in equation (6): 466 

 467 

 468 

 469 
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 This procedure allows us to achieve the results in Fig. 2c. 470 

 471 

Bias/variance comparison 472 

To verify that our RNN model behaved like the drift-diffusion model (DDM) it was designed to implement, 473 

we simulated the target DDM over the one-dimensional parameter 𝜃𝜃. The change in 𝜃𝜃 is determined by the 474 

following stochastic ordinary differential equation: 475 

 476 

 477 

 478 

where G(𝜃𝜃) is the deterministic drift function and dW represents a Wiener process that introduces Gaussian 479 

noise at every timestep, scaled by the standard deviation . 480 

 To compare the models, we used a sinusoidal drift function with a maximum value of 0.2 rad/s and a 481 

noise standard deviation  of 0.2. The frequency determined the number of fixed points of the drift function, and 482 

we tested values of 0, 2, 4, 6, and 8. Note that setting the frequency to 0 results in a completely flat drift function, 483 

effectively creating infinite fixed points. We simulated the two models 30 times each for 18 different initial 484 

conditions. The timestep was set to 50 ms for the DDM, and each trial was simulated for 15 seconds.  485 

 As we were interested in exploring the usefulness of semi-discrete representations, we compared the 486 

average bias and variance of the model estimates at the end of the simulation time. The variance and bias 487 

metrics are computed as follows, averaging over the initial values of 𝜃𝜃. 488 

 489 

 490 

 491 

 492 

 493 

Input control 494 
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 Our approach of controlling the network’s behavior with inputs relies on the ability to navigate a null space 495 

such that the dynamics governing the output change in a desired way. We achieve this by balancing out the 496 

input along a particular axis with an equivalent decay. This can be explained with some simple linear algebra. 497 

 First, consider a dynamical system with state vector y. As discussed previously, we can use the Jacobian 498 

matrix J to linearly approximate the system’s behavior around some point. We can then express the Jacobian 499 

by its eigendecomposition. 500 

 501 

 502 

 If the local dynamics are of rank m, and the eigenvalues and eigenvectors are written as  and  503 

respectively, we can see that changes in y are essentially the sum of dynamics along separate eigenvectors: 504 

 505 

Where  refers to the projection of y onto the ith eigenvector. We now consider changes in a single dimension: 506 

 507 

The solution to this equation is simply an exponential function, where the eigenvalue determines the exponent.  508 

 509 

We will consider the case where the eigenvalue is a constant negative value. In that case, the system’s projection 510 

in this dimension will decay towards zero. This means that zero is a stable fixed point for that dimension. 511 

 512 

However, if we add a tonic input that projects along that dimension, we can change the system’s behavior. Now, 513 

the differential equation is the following: 514 

 515 
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The solution to this equation is still exponential decay, but if we solve for the fixed point there is now a different 516 

long-term behavior: 517 

 518 

 519 

 520 

This means that the stable fixed point along the dimension is now at I/a, rather than zero. This means that 521 

introducing a tonic input as described will cause the system to shift to a different region of state space where the 522 

projection onto the ith eigenvector is I/a. 523 

 We use this property to our advantage in the text. We define an “input dimension” that is orthogonal to 524 

the ring. This creates a cylinder-shaped manifold. Instead of just specifying the drift function around one ring, we 525 

define it for several rings that lie on the cylinder. Since the maximum drift speed smoothly increases as we move 526 

up the cylinder, tonic inputs that push the network state in that dimension increase the drift speed. The choice of 527 

increasing drift speed with the tonic input is arbitrary.  528 

 For our simulations, we set the eigenvalue corresponding to decay along the cylinder to -1. The rings 529 

were scaled to have a radius of 8, and rings corresponding to different input levels were 6 units of distance apart. 530 

 531 

Constructing high-dimensional rings 532 

 We made several choices for how to embed a ring in a higher-dimensional space. As our goal was to 533 

compare how well EMPJ works for rings of different dimensionality and geometry, we decided to 1) keep total 534 

population activity constant across all conditions, and 2) use as few parameters as possible to define the ring. 535 

 To achieve the latter, we thought of the ring in terms of latent tuning curves that cause the ring to bend 536 

into different dimensions, and made the density and narrowness of these tuning curves the only parameters we 537 

could change. The latent tuning curves consisted of unnormalized von Mises functions that reach a maximum of 538 

½. We defined the centers of the latent tuning curves so that they were evenly spaced around the ring. A single 539 

width parameter, κ, controlled the widths of all the tuning curves. Thus, for a ring with bends into d dimensions, 540 

the equation for the jth tuning curve is given by the following: 541 
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 542 

 543 

 544 

 To keep the total population activity constant, we thought of the ring as lying on a hypersphere, meaning 545 

that the norm of the vector describing every point on the ring is constant. This allows us to consider latent tuning 546 

curves in terms of hyperspherical coordinates. An n-dimensional hypersphere is a manifold embedded in (n+1)-547 

dimensional space (e.g. the 2-dimensional surface of a 3-dimensional ball). Any point on that manifold can be 548 

described by n coordinates: one planar angle that ranges from 0 to 2𝜋𝜋 and n-1 elevation angles that range from 549 

0 to 𝜋𝜋 (Fig. S1a). The planar angle 𝜃𝜃 is the same as the parameter being “remembered” by the ring in the working 550 

memory task. We consider the latent tuning curves to be projections of the elevation angles onto an axis 551 

orthogonal to the plane corresponding to the planar angle (e.g. the vertical axis in Fig. S1a). The remainder of 552 

the magnitude of the sphere’s radius is distributed to projections onto the two Euclidean axes defining the plane. 553 

The result is that there are always two latent curves related to the sine and cosine of  𝜃𝜃, and then (n-2) latent 554 

tuning curves with a von Mises shape (Fig. S1b). The sphere radius we used in our simulations was 12, which 555 

we found causes only a few of the units in the network to have saturated firing rates when the ring coordinates 556 

were embedded in the high-dimensional network state using normally distributed vectors. 557 

  558 

 559 
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Figure S1 Rings on hyperspheres a) Illustration of a 2-sphere, for which the surface is parametrized by a planar angle 𝜃𝜃 and one elevation angle 𝜙𝜙. 560 
Latent tuning curves describe the projection of the ring onto the Euclidean axes of the sphere. b) Example of latent tuning curves for a 7-sphere embedded 561 
in an 8-dimensional Euclidean space. The first six latent tuning curves contributing to the ring consist of equally spaced von Mises functions, while the last 562 
two are the sine and cosine of the planar angle 𝜃𝜃, normalized to keep the norm constant at every point. 563 

 564 

Ring capacity 565 

 To measure the ability of a network to approximate dynamics over a given ring, we defined an error metric 566 

we refer to as deviation. We defined deviation as the average Euclidean distance between the network state  567 

and the network state  we would expect based on the decoded angle , averaged over time and initial conditions. 568 

This is expressed by the following equation: 569 

 570 

 571 

 572 

 The first step for computing deviation is to decode the angle being represented by the network. This is 573 

done as described previously in (8) and (9). We then use the known latent tuning curves to generate a network 574 

state  corresponding to that angle. For our measurements of deviation, we did this for 24 different initial 575 

conditions on the ring and for 5 seconds of simulation time, sampling the trajectories every 0.1 seconds. It is 576 

worth noting that the exact value of deviation is not necessarily meaningful, but it is useful for comparing different 577 

networks.  578 

 When measuring network capacity as a function of network size, we measured deviation for 10 different 579 

networks. For each, we set the number of von Mises latent tuning curves to 4, the tuning curve width to 2, and 580 

the number of fixed points to 4. Another relevant parameter was the standard deviation of regularization noise 581 

added when finding the weight matrix, which we set to 1e-3. We tested network sizes of 100, 200, 300, 400, 500, 582 

and 600 units. 583 

  For measuring network capacity as a function of the number of the ring dimensionality, width of latent 584 

tuning curves, and number of fixed points, we used a similar procedure, this time keeping the network size fixed 585 

at 400 units and changing only the parameters of interest. 586 

 587 
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Code 588 

 Code for reproducing the results of this paper can be found at https://github.com/elipollock/EMPJ. 589 
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