
1

Engineering recurrent neural networks from task-relevant manifolds and dynamics 1

 2

Eli Pollock1, Mehrdad Jazayeri1* 3

 4

1Department of Brain & Cognitive Sciences, McGovern Institute for Brain Research, 5

Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA 6

 7

*Corresponding author: mjaz@mit.edu (MJ) 8

.CC-BY-NC-ND 4.0 International licenseIt is made available under a
perpetuity.preprint (which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for this. http://dx.doi.org/10.1101/2019.12.19.883207doi: bioRxiv preprint first posted online Dec. 20, 2019;

mailto:mjaz@mit.edu
http://dx.doi.org/10.1101/2019.12.19.883207
http://creativecommons.org/licenses/by-nc-nd/4.0/

2

Abstract 9

Many cognitive processes involve transformations of distributed representations in neural populations, creating 10

a need for population-level models. Recurrent neural network models fulfill this need, but there are many open 11

questions about how their connectivity gives rise to dynamics that solve a task. Here, we present a method for 12

finding the connectivity of networks for which the dynamics are specified to solve a task in an interpretable way. 13

We apply our method to a working memory task by synthesizing a network that implements a drift-diffusion 14

process over a ring-shaped manifold. We also use our method to demonstrate how inputs can be used to control 15

network dynamics for cognitive flexibility and explore the relationship between representation geometry and 16

network capacity. Our work fits within the broader context of understanding neural computations as dynamics 17

over relatively low-dimensional manifolds formed by correlated patterns of neurons. 18

 19

Author Summary 20

Neurons in the brain form intricate networks that can produce a vast array of activity patterns. To support 21

goal-directed behavior, the brain has to adjust the connections between neurons so that network dynamics can 22

perform desirable computations on behaviorally relevant variables. A fundamental goal in computational 23

neuroscience is to provide an understanding of how network connectivity aligns the dynamics in the brain to the 24

dynamics needed to track those variables. Here, we develop a mathematical framework for creating recurrent 25

neural network models that can address this problem. Specifically, we derive a set of linear equations that 26

constrain the connectivity to afford a direct mapping of task-relevant dynamics onto network activity. We 27

demonstrate the utility of this technique by creating and analyzing a set of network models that can perform a 28

simple working memory task. We then extend the approach to show how additional constraints can furnish 29

networks whose dynamics are controlled flexibly by external inputs. Finally, we exploit the flexibility of this 30

technique to explore the robustness and capacity limitations of recurrent networks. This network synthesis 31

method provides a powerful means for generating and validating hypotheses about how task-relevant 32

computations can emerge from network dynamics. 33

.CC-BY-NC-ND 4.0 International licenseIt is made available under a
perpetuity.preprint (which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for this. http://dx.doi.org/10.1101/2019.12.19.883207doi: bioRxiv preprint first posted online Dec. 20, 2019;

http://dx.doi.org/10.1101/2019.12.19.883207
http://creativecommons.org/licenses/by-nc-nd/4.0/

3

Introduction 34

As it becomes possible for neuroscientists to simultaneously record ever-larger numbers of neurons [1], 35

there is a need for theoretical frameworks and models to make sense of the resulting data and explain how 36

behavior arises from the cooperation of many neurons. Rising to this challenge, the field of computational 37

neuroscience has established that cortical neurons can and do perform distributed computations through 38

population-level dynamics [2]. This finding necessitates further development of data analysis techniques and 39

models that make population-level explanations and predictions. 40

In studying behavior, an important aim is to develop models that incorporate a set of latent variables that 41

can parsimoniously explain observable behavioral states. For instance, in decision-making tasks, drift-diffusion 42

models have explained choice behavior in terms of a one-dimensional latent decision variable [3,4]. A more 43

general framework that can accommodate behaviors with multiple latent variables is to consider a “latent task 44

space” whose dimensions represent those variables (Fig. 1). Within this task space, one can specify (1) the 45

subregion the latent variables occupy during the task (“latent task manifold”), and (2) the dynamics with which 46

those variables evolve (“latent task dynamics”). 47

To understand how patterns of neural activity give rise to behavioral variables, we need an analogous 48

state space description of neural signals. Neural state space can be straightforwardly defined as a coordinate 49

system in which the instantaneous firing rate of each neuron represents a dimension. Within this framework, the 50

key to understanding the connection between neurons and behavior is to characterize the mapping between the 51

behavioral and neural state spaces. Since the number of behavioral variables is typically much smaller than the 52

number of underlying neurons, numerous studies have sought to link behavior to a set of “latent neural 53

dimensions,” that create a lower-dimensional “latent neural space” during task performance [5,6]. While there is 54

no guarantee of a one-to-one match between the latent neural dimensions and latent task dimensions, mounting 55

evidence suggests the task manifold might be nonlinearly embedded in latent neural space as a “latent neural 56

manifold” (Fig. 1) [7,8]. 57

 So far, this provides a descriptive account of how the low-dimensional geometry of neural activity can 58

relate to task-relevant computations. However, manifolds are only abstract mathematical constructs that result 59

from data analysis. Can we provide a generative account for how a population of neurons can support particular 60

.CC-BY-NC-ND 4.0 International licenseIt is made available under a
perpetuity.preprint (which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for this. http://dx.doi.org/10.1101/2019.12.19.883207doi: bioRxiv preprint first posted online Dec. 20, 2019;

https://paperpile.com/c/sJe6eV/t2TQ2
https://paperpile.com/c/sJe6eV/lY2c4
https://paperpile.com/c/sJe6eV/oKVcC+y0Kkh
https://paperpile.com/c/sJe6eV/lZkvJ+ugqcY
https://paperpile.com/c/sJe6eV/NTlrl+lm3zs
http://dx.doi.org/10.1101/2019.12.19.883207
http://creativecommons.org/licenses/by-nc-nd/4.0/

4

manifold geometries? Specifically, can we create a model whose dynamics give rise to a neural manifold that is 61

an arbitrarily embedded task manifold? 62

To answer this, we turn to recurrent neural network (RNN) models. RNNs capture the recurrent, 63

distributed nature of neural computation and are theoretically able to approximate any dynamical system [9]. 64

Recent advances in machine learning and computing capability have made their use practical for a variety of 65

applications in computational neuroscience. In some studies, RNNs are optimized to reproduce neural data 66

[10,11]. Other studies take a task-oriented approach, training a network to perform a task and then attempting 67

to find similarities between the RNN’s population dynamics and those of biological neurons recorded from an 68

animal performing a similar task [12,13]. It is also possible to take a hybrid approach, training a network on a 69

task with constraints that yield more brain-like solutions [14,15]. 70

All of these training approaches can be used to generate hypotheses about how networks solve tasks, 71

as they are generally agnostic to any specific solutions [16]. Valuable insight can come from exploring the 72

geometry of the neural manifolds created by such networks [17,18]. Additionally, one can apply analysis 73

techniques from dynamical systems theory to characterize fixed points and other dynamical features that 74

determine how network states evolve through time [19]. Overall, studying trained RNNs answers questions about 75

the kinds of dynamics that can be used to solve tasks. We are concerned with exploring the inverse question: 76

what kinds of networks are capable of implementing a given low-dimensional dynamical system (Fig. 1)? This 77

requires a synthesis-based approach, which has been explored in some studies but is far from a settled question 78

[20,21]. 79

Here, we propose a novel method for creating RNNs that can map latent task manifolds to arbitrary neural 80

manifolds. This allows us to create RNNs that can explore a range of dynamical solutions to tasks. We use our 81

method to consider how inputs can be used to perform flexible computations, and explore how different 82

embeddings of the task manifold in the neural space can affect network performance and connectivity. 83

 84

 85

.CC-BY-NC-ND 4.0 International licenseIt is made available under a
perpetuity.preprint (which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for this. http://dx.doi.org/10.1101/2019.12.19.883207doi: bioRxiv preprint first posted online Dec. 20, 2019;

https://paperpile.com/c/sJe6eV/JvNYh
https://paperpile.com/c/sJe6eV/vIAmw+jBj9C
https://paperpile.com/c/sJe6eV/suRW7+26LYi
https://paperpile.com/c/sJe6eV/W8Jab+0lU6x
https://paperpile.com/c/sJe6eV/FlQfa
https://paperpile.com/c/sJe6eV/zwCKo+PXzD1
https://paperpile.com/c/sJe6eV/2Yq0k
https://paperpile.com/c/sJe6eV/e1pj2+rKD4A
http://dx.doi.org/10.1101/2019.12.19.883207
http://creativecommons.org/licenses/by-nc-nd/4.0/

5

 86
Figure 1 Theoretical framework Left: A hypothetical task involving latent variables. MIddle left: The evolution of these variables can be represented in 87
a latent task space (gray rectangle). In this illustration, adapted from [22], the task might be a time interval production task, where the horizontal axis 88
represents the relative elapsed time. The vertical axis represents the interval duration by a latent variable that specifies the speed of evolution in the 89
horizontal direction, with faster speed (higher on the vertical axis; larger arrows) corresponding to shorter intervals. Middle right: A nonlinear embedding 90
of the task manifold in a neural state space. Right: An RNN models that establishes that nonlinear embedding. 91

.CC-BY-NC-ND 4.0 International licenseIt is made available under a
perpetuity.preprint (which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for this. http://dx.doi.org/10.1101/2019.12.19.883207doi: bioRxiv preprint first posted online Dec. 20, 2019;

https://paperpile.com/c/sJe6eV/EsVED
http://dx.doi.org/10.1101/2019.12.19.883207
http://creativecommons.org/licenses/by-nc-nd/4.0/

6

Results 92

Creating networks that embody task-relevant latent dynamics 93

Our overarching objective is to examine the computational properties of RNNs whose state dynamics 94

capture the evolution of latent variables in a task, which might be inferred from behavioral models. Since different 95

tasks demand different latent-variable dynamics, as a first step we need a technique for creating RNNs whose 96

state dynamics can be engineered. Here, we describe an approach that achieves this goal rapidly and flexibly. 97

We start by considering a case in which the objective dynamics are known and we want to synthesize an 98

RNN that can emulate those dynamics. We consider the class of RNNs in which the dynamics of the units are 99

characterized by a differential equation as follows: 100

 101

In this equation, x is an N-dimensional vector specifying the activity of all N units in the network, 𝜏𝜏 is the 102

time constant of the units, W is an N-by-N matrix specifying the synaptic weights between units, and I is a vector 103

of inputs into each unit. The superscript T signifies transpose operation. The function is a monotonic, 104

differentiable nonlinearity that transforms the activity into a “firing rate.” Here, we use . 105

We sought to create the objective dynamics in the RNN by matching the local partial derivatives of the 106

network to that of the objective dynamics. In vector calculus, the matrix of local partial derivatives is known as 107

the Jacobian. As such, we have to adjust W so that the Jacobian of the network, denoted 𝐽𝐽𝑅𝑅𝑅𝑅𝑅𝑅, would match the 108

Jacobian of the objective dynamics, denoted 𝐽𝐽𝑜𝑜𝑜𝑜𝑜𝑜. For the network, 𝐽𝐽𝑅𝑅𝑅𝑅𝑅𝑅 can be written as follows: 109

 110

with diag indicating a matrix with a specified vector along its diagonal and zeros everywhere else. The matrix 111

is the identity matrix of size N. 112

To adjust RNN dynamics along different dimensions, we used eigendecomposition to factorize 𝐽𝐽𝑅𝑅𝑅𝑅𝑅𝑅 to a 113

set of eigenmodes. Each eigenmode is characterized by an eigenvector, which specifies a single dimension 114

within the state space, and a corresponding eigenvalues that quantifies the rate and direction of movement along 115

.CC-BY-NC-ND 4.0 International licenseIt is made available under a
perpetuity.preprint (which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for this. http://dx.doi.org/10.1101/2019.12.19.883207doi: bioRxiv preprint first posted online Dec. 20, 2019;

http://dx.doi.org/10.1101/2019.12.19.883207
http://creativecommons.org/licenses/by-nc-nd/4.0/

7

that dimension [23]. If we collect the N eigenvectors within a matrix U and the eigenvalues within a diagonal 116

matrix 𝛴𝛴, 𝐽𝐽𝑅𝑅𝑅𝑅𝑅𝑅can be factorized as 𝑈𝑈𝑈𝑈𝑈𝑈𝑇𝑇. After substituting 𝐽𝐽𝑅𝑅𝑅𝑅𝑅𝑅 with this eigendecomposition and some linear 117

algebra, we can rewrite (2) as follows: 118

 119

 In principle, we can find W by replacing U and by their corresponding values based on , and solve 120

for W. For example, if we are defining a point attractor, we would specify all eigenvalues to be negative, meaning 121

that perturbations away from the point will decay. However, we have to address one problem beforehand: 122

usually, the dimension of and do not match: the dimensionality of is specified by the number of 123

units (N), whereas the dimensionality of , denoted d, is determined by the number of latent variables needed 124

to perform a given task, and d has to be smaller than N. From a geometrical perspective, this means that W 125

should be adjusted such that the network is low-rank; i.e., activity must reside within a d-dimensional subspace 126

associated with the latent dynamics. 127

Since the number of task-relevant latent variables are usually far smaller than the size of the network [8], 128

 can only be used to constrain the first d eigenmodes in the state space. To handle the other dimensions, we 129

employ a simple trick: we set the eigenvalues of the remaining N-d dimensions to a negative value (−1/𝜏𝜏). This 130

serves two purposes. First, it ensures that activity remains within the desired d-dimensional subspace (i.e, activity 131

along other dimensions would decay), and second, it allows us to ignore these dimensions and rewrite (3) for 132

the d eigenmodes associated with : 133

 134

where contains the d eigenvectors of embedded in an N-dimensional space (N-by-d), contains the 135

corresponding eigenvalues, and the identity matrix is now of size d. This equation can be further simplified to 136

the following form: 137

 138

.CC-BY-NC-ND 4.0 International licenseIt is made available under a
perpetuity.preprint (which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for this. http://dx.doi.org/10.1101/2019.12.19.883207doi: bioRxiv preprint first posted online Dec. 20, 2019;

https://paperpile.com/c/sJe6eV/FFuUJ
https://paperpile.com/c/sJe6eV/lm3zs
http://dx.doi.org/10.1101/2019.12.19.883207
http://creativecommons.org/licenses/by-nc-nd/4.0/

8

Since is d-dimensional, equation 5, which is written for a single point in the state space (subscript 139

), provides d linear constraints on the connectivity matrix. However, we can rewrite (5) for some number m 140

points in the state space for which is defined, and create a system of linear equations to solve for the 141

unknowns in W: 142

 143

 Using this method, which we refer to as Embedding Manifolds with Population-level Jacobians (EMPJ), 144

we can create an RNN whose activity is confined to a desired manifold and whose slow dynamics over that 145

manifold are fully specified by some objective dynamics (see Methods for full details). 146

 147

A ring attractor with discrete fixed points 148

To examine the utility of EMPJ, we attempted to construct a ring attractor that contains a set of discrete 149

fixed points. This choice was motivated by the fact that (1) ring attractors have long served as a canonical 150

example of constrained dynamics [24], and (2) discrete fixed points can be used introduce error-correcting 151

dynamics over the ring. Such semi-discrete ring-attractor dynamics have been implicated in the study of human 152

visual working memory of color [25]. When humans report of a previously seen color after a delay over a color 153

wheel (Fig. 2a, left), their responses exhibit biases that can be captured by fixed-point dynamics over a ring 154

attractor; i.e, with longer delays, the reported color drifts slowly over the color wheel toward a stable set of colors. 155

This behavior can be captured by a one-dimensional drift-diffusion model over the ring that specifies the 156

relaxation dynamics of a single latent variable associated with the internal memory of the color. This behavior of 157

the model depends on two key parameters: a drift function that specifies the average movement direction and 158

speed as a function of position on the ring (Figure 2a, middle), and the noise that causes the internal state to 159

diffuse (see Methods). 160

Accordingly, we need to construct an RNN whose activity resides on an embedded ring manifold, and 161

whose activity dynamics matches that of a desired drift-diffusion model. For this example, we used a sinusoidal 162

drift function with a period of 60 degrees so that the ring contained six equidistant and alternating stable and 163

unstable fixed points (Figure 2b). The number of fixed points can be changed by changing the frequency of the 164

.CC-BY-NC-ND 4.0 International licenseIt is made available under a
perpetuity.preprint (which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for this. http://dx.doi.org/10.1101/2019.12.19.883207doi: bioRxiv preprint first posted online Dec. 20, 2019;

https://paperpile.com/c/sJe6eV/Jz7lA
https://paperpile.com/c/sJe6eV/AYmCg
http://dx.doi.org/10.1101/2019.12.19.883207
http://creativecommons.org/licenses/by-nc-nd/4.0/

9

drift function. Next, we need to create a matching ring manifold in the RNN. We can achieve this in five steps. 165

First, we define an arbitrary 2D subspace (plane) within the state space that would contain the desired ring 166

manifold. Second, we choose a set of points along the ring to construct the equations in (6). We will refer to 167

these as setpoints. Third, for every setpoint, we set the eigenvalue associated with radial eigenvector to a 168

negative constant (see Methods for complete details). This ensures that the embedded ring is stable. Fourth, we 169

must specify the relaxation dynamics over the ring. To do so, for every setpoint, we set the eigenvalues 170

associated with the tangential eigenvector to the derivative of the drift function. This ensures that over the 171

embedded ring is locally matched to derived from the drift function. Finally, we solve the linear equations in 172

(6) to derive the W, for the RNN that satisfies these constraints. For now, we ignore inputs and consider the RNN 173

an autonomous dynamical system. 174

To test the solution, we initialized the network at various states close to the ring in the state space and 175

allowed the state to evolve according to the imposed relaxation dynamics. As expected, the network state quickly 176

moved onto the ring and evolved towards the nearest stable fixed points (Fig. 2b, left). Moreover, the state 177

dynamics over the ring indicated that the speed of the drift in the state space closely matched the speed predicted 178

from the drift function (Fig. 2b, right). 179

We also tested drift functions with different number of fixed points, non-periodic drift functions, and drift 180

functions with a non-zero mean. In all cases, EMPJ was able to construct an RNN that would accurately capture 181

the desired dynamics. The case for a drift function with a non-zero mean requires a non-trivial adjustment to 182

what we discussed previously. In general, because eigenvalues are set according to the derivative of the drift 183

function, EMPJ’s default solution is a network that corresponds to a drift function with a mean of zero. However, 184

a baseline can be added straightforwardly by an additional constraints to equation (6) that define where fixed 185

points should be located; i.e., where the drift function crosses zero (see Methods) (Fig. 1c). These examples 186

highlight the possibility of using EMPJ as a simple and rapid method for constructing RNN that can express a 187

variety of low-dimensional latent dynamics. 188

.CC-BY-NC-ND 4.0 International licenseIt is made available under a
perpetuity.preprint (which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for this. http://dx.doi.org/10.1101/2019.12.19.883207doi: bioRxiv preprint first posted online Dec. 20, 2019;

http://dx.doi.org/10.1101/2019.12.19.883207
http://creativecommons.org/licenses/by-nc-nd/4.0/

10

 189

Figure 2 Semi-discrete representations for working memory a) (left) We imagine a task where the goal is to remember a continuous, periodic, one-190
dimensional variable (such as color from a wheel). (middle) A possible dynamical solution to the task. We have superposed a plot of the drift function in 191
polar coordinates on top of the ring-shaped manifold corresponding to the subject’s mental representation of color. A positive drift means clockwise 192
movement on the ring, while negative means counterclockwise. Wherever the drift function crosses zero, there is a fixed point, which is either stable or 193
unstable depending on the slope of the drift function at that point. (right) We wish to create a network that implements this dynamical solution. b) (left) First 194
two principal components of RNN activity, initialized from points close to the ring attractor (blue). Without noise, neural trajectories go towards stable fixed 195
points (red). (right) The drift of the RNN working memory representation compared with the target drift function used to create the RNN. c) Five different 196
networks have drift functions that are shifted from mostly clockwise (red) motion to counter-clockwise (blue) motion. (inset) This is accomplished by 197
constraining the location of fixed points. 198

 199

Comparison of RNN with drift-diffusion model 200

 Our implementation of a slow drift over a ring-shaped manifold is based on the assumption that a robust 201

circuit for working memory requires corrective dynamics to counter the effect of noise. However, we have so far 202

only analyzed networks under noiseless conditions. We now ask how the system responds to noise by comparing 203

its behavior to a one-dimensional drift-diffusion model (DDM) and investigating whether the semi-discrete 204

representation we have created improves the working memory of the system. 205

.CC-BY-NC-ND 4.0 International licenseIt is made available under a
perpetuity.preprint (which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for this. http://dx.doi.org/10.1101/2019.12.19.883207doi: bioRxiv preprint first posted online Dec. 20, 2019;

http://dx.doi.org/10.1101/2019.12.19.883207
http://creativecommons.org/licenses/by-nc-nd/4.0/

11

 For our analysis, we will add noise to the network through input vectors that are aligned with the plane in 206

which the ring sits. We will refer to this kind of noise as “external noise.” The idea that diffusion might be driven 207

by noise introduced through input channels is supported by physiological evidence [26]. An alternative would be 208

introducing noise independently to every unit in the network, but the projection of the variance of a high-209

dimensional noise vector onto the tangent vector of the ring is inversely proportional to the size of the network, 210

so this “internal noise” vector would need to be quite large to cause the same amount of diffusion as external 211

noise. In simulations, we found that adding such large vectors caused unpredictable network behavior, 212

presumably because the perturbations due to noise brought the network’s state so far away from the ring. By 213

calculating the relationship between external noise in the RNN and noise in the DDM (see Methods), we were 214

able to directly compare the behavior of the two models. We found that the distributions of estimates of the initial 215

position on the ring were identical. This was true whether there were two fixed points on the ring or infinitely 216

many (Fig. 3a). 217

 218

 219

Figure 3 Comparison of bias-variance trade-off a) (top) Simulations of a drift-diffusion model (DDM), given a specified number of stable fixed points in 220
a sinusoidal drift function. Initial values are on the x-axis, while the estimated values after 15 seconds of simulation time are on the y-axis. Each initial 221
condition was simulated 100 times. (bottom) The same simulations in RNNs built to replicate the DDM. The RNNs were given correlated noise confined 222
to the same plane as the ring-shaped manifold. The strength of noise was made to match that in the DDM. b) Average bias and variance for the DDM (top) 223
and RNN (bottom) for various numbers of fixed points. 224

.CC-BY-NC-ND 4.0 International licenseIt is made available under a
perpetuity.preprint (which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for this. http://dx.doi.org/10.1101/2019.12.19.883207doi: bioRxiv preprint first posted online Dec. 20, 2019;

https://paperpile.com/c/sJe6eV/ywPcI
http://dx.doi.org/10.1101/2019.12.19.883207
http://creativecommons.org/licenses/by-nc-nd/4.0/

12

 225

We further compared the results by computing the average bias and variance of the distributions. Since 226

the overall mean squared error of an estimator is the sum of its variance and bias squared, this was also a way 227

of verifying that our assumptions about the optimality of semi-discrete representations. We found that the rings 228

with only two fixed points were very biased after 15 seconds of simulation time, since estimates were clustered 229

around those two points. However, increasing the number of fixed points decreased both the bias and variance, 230

leading to an overall reduction in error. The lowest total average error occurred with six fixed points. After that, it 231

became easier for noise to push the state in between basins of attraction, and even though bias continued to 232

decrease there were increases in variance that caused overall error to increase. The curves in the bias-variance 233

plots are almost identical for the DDM and RNN simulations, indicating that the RNNs are accurately 234

implementing the DDMs for which they were engineered. 235

 236

Input control of network dynamics 237

So far, we have demonstrated the ability of our method to create an RNN that implements an autonomous 238

dynamical system that performs a computation. In this case, that computation is maintaining a semi-discrete 239

representation of a variable. But what if we wish to add some flexibility to the network’s dynamics? For example, 240

it could be useful to adjust the strength of the drift function in response to different levels of noise being added 241

to the network. If there is a high level of noise being added to the network, it would make sense to increase the 242

amplitude of the drift function. With very low noise, it would make more sense to have a slower drift. 243

One possible solution to the problem of creating more flexible computations is the addition of inputs to 244

the RNN. The most common way to do this is to simply project the inputs into the population using linear weights. 245

In this case, inputs are often classified as either “sensory,” providing transient information directly relevant to 246

completing a task, or “contextual,” providing a cue about what kind of task needs to be done. Contextual inputs 247

are typically modeled as tonic inputs that take a certain value for the duration of the task [12,27]. In a recent 248

study, the geometry of neural trajectories and RNN modeling suggested that tonic inputs might be used by 249

cortical circuits to flexibly switch between different behavioral regimes [18]. How can we understand the 250

.CC-BY-NC-ND 4.0 International licenseIt is made available under a
perpetuity.preprint (which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for this. http://dx.doi.org/10.1101/2019.12.19.883207doi: bioRxiv preprint first posted online Dec. 20, 2019;

https://paperpile.com/c/sJe6eV/suRW7+iev2T
https://paperpile.com/c/sJe6eV/PXzD1
http://dx.doi.org/10.1101/2019.12.19.883207
http://creativecommons.org/licenses/by-nc-nd/4.0/

13

computational function of these inputs from a dynamical systems perspective, and can we use that 251

understanding to create networks that flexibly switch between task contexts? 252

In the case of adjusting the strength of the drift function in the example working memory task, we consider 253

the role that inputs appear to play in modulating the speed of neural trajectories [13,18]. We continue with the 254

same working memory task as before, but assume now that we wish to use tonic inputs to modulate the strength 255

of the corrective drift. In other words, we want the amplitude of the sinusoidal drift function to increase with a 256

tonic input, which will be introduced according to equation (1) by projecting the input value onto the neural 257

population (Fig. 4a). 258

We begin with our method as described so far: for a set of points on a manifold, we define the first few 259

eigenvalues and eigenvectors of the Jacobian to give the desired recurrent dynamics along a ring-shaped 260

manifold. We will refer to the space spanned by these eigenvectors as the “recurrent subspace,” illustrated by 261

the colored planes in Figure 4b. We then add another dimension to the Jacobian eigendecomposition, such that 262

the eigenvectors are the same as the vector of weights used to project the input onto the population. This 263

dimension can be referred to as the “input subspace.” We also specify the associated eigenvalues to be a 264

negative constant. This means that the projection of the system’s state along the input subspace will 265

exponentially decay (see Methods for further details). Therefore, a tonic input will push the system up to some 266

point where it is canceled out by the exponential decay of activity along the input subspace (Fig. 4b). For constant 267

inputs, the system will reach an equilibrium point where it is stable. Importantly, we can then alter the dynamics 268

in the recurrent subspace so they are parametrized by the position in the input subspace. In this example, we 269

scale the eigenvalues that control the drift function by their position along the input subspace, so that the drift 270

function has zero amplitude when there is no input and has a high amplitude with a high input. 271

 After incorporating the input into the EMPJ framework, we performed a similar simulation as before, 272

initializing the resulting RNN at various points around the ring manifold and at levels in the input subspace 273

corresponding to certain inputs. We were able to control the speed of the drift function as desired: there was 274

very slow drift without any input, and fast drift when there were high inputs (Fig. 4c). 275

 276

.CC-BY-NC-ND 4.0 International licenseIt is made available under a
perpetuity.preprint (which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for this. http://dx.doi.org/10.1101/2019.12.19.883207doi: bioRxiv preprint first posted online Dec. 20, 2019;

https://paperpile.com/c/sJe6eV/PXzD1+26LYi
http://dx.doi.org/10.1101/2019.12.19.883207
http://creativecommons.org/licenses/by-nc-nd/4.0/

14

277

Figure 4 Input control of speed a) A one-dimensional input, which will be used to control the speed of dynamics, is projected by an “input vector” into 278
the neural population. In subsequent panels, blue colors indicate low input, while red indicate higher input. b) We define the input vector to be orthogonal 279
to the plane containing the ring. Using our method, the network’s dynamics are set such that a constant input increases the RNN’s position along that axis 280
until it is canceled out by decay in the same direction. At that point, the system is stable in a new plane, and the dynamics can be specified in that subspace 281
(in this case, to go faster around the ring). c) (left) PCA of network activity, initialized at various points around the ring and for different input conditions. 282
Black and white dots illustrate start and stop of one initialization, while colors indicate neural trajectories given a particular input level. As expected, tonic 283
inputs confine the dynamics to different rings. (right) Measured drift functions for various inputs closely align with the target drift functions. 284

 285

Rings embedded in high-dimensional space 286

Next, we explore the ability of EMPJ to embed rings in more than two dimensions, which will enable us 287

to explore representations between two extremes. At one limit of dimensionality, units have independent tuning 288

curves that fully determine their responses to a stimulus (Fig. 5a, left). In this case, the dimensionality of the 289

system cannot be reduced: we have a ring embedded in the same number of dimensions as there are units in 290

the network. On the other hand, we have rings in only two dimensions, where the tuning curves of units will 291

consist of weighted sums of a sine and cosine. Here, we might say that there are two “latent tuning curves” that 292

project into the population. We can explore rings of intermediate dimensionality by adding other latent tuning 293

curves aligned with other population modes (Fig. 5a, right). This can be thought of as “bending” the ring out of 294

its original plane (Fig. 5b). In our simulations, these bends consist of von Mises functions, which are evenly 295

spaced around the ring and have widths controlled by the parameter κ (see Methods for full details). To keep the 296

overall population activity constant, we normalize these latent tuning curves so that the ring lies on a 297

hypersphere. The total number of latent tuning curves provides the embedding dimension of the ring. The tuning 298

.CC-BY-NC-ND 4.0 International licenseIt is made available under a
perpetuity.preprint (which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for this. http://dx.doi.org/10.1101/2019.12.19.883207doi: bioRxiv preprint first posted online Dec. 20, 2019;

http://dx.doi.org/10.1101/2019.12.19.883207
http://creativecommons.org/licenses/by-nc-nd/4.0/

15

curves of single units are then made of linear combinations of these latent tuning curves (Fig. 5a, right), and will 299

demonstrate the mixed selectivity that is a hallmark of cortical representations [28]. 300

 We find that the embedding dimension fully determines the rank of the connectivity matrix for the RNN. 301

No matter what kinds of dynamics occur over the ring, the connectivity matrix only ever has the same number of 302

non-zero eigenvalues as there are embedding dimensions (Fig. 5c). This can be explained by the fact that the 303

linear constraints we used to build our networks occupy the same subspace. The eigendecomposition of the 304

weight matrix reveals its true function: one set of eigenvectors projects the network state into a low-dimensional 305

subspace, the eigenvalues scale it along the relevant dimensions, and the inverse eigenvectors project it back 306

into the full space. Since Equation 1 includes a “membrane leak” term, activity in all other dimensions decays 307

exponentially. 308

 Another finding, unrelated to the RNNs but relevant to questions about optimal representations, is that 309

both the width and number of latent tuning curves affect the total length of the ring manifold (Fig. 5d). Total ring 310

length is a relevant metric to consider, since it means that the distance along the ring between states is greater, 311

making it easier to discriminate between them and reducing the effects of noise. For broad tuning, corresponding 312

to low values of κ, increasing the embedding dimension results in a shorter ring. Intuition for this result can come 313

from the three-dimensional case illustrated in Fig. 5b. An infinitely broad von Mises function consists of a constant 314

value, which would turn the “bend” in the x1 dimension into an offset from the sphere’s equator. Now the ring 315

would simply lie at a higher “latitude” on the sphere, and would be shorter. Conversely, increasing the embedding 316

dimension of the ring when the tuning curves are relatively narrow will monotonically lengthen the ring. This is 317

consistent with the theoretical result [29] that narrow tuning curves densely tiling the stimulus space optimizes 318

the Fisher information of a population of neurons. Our result here, combined with the previous theory, suggests 319

that there may be pressure on a neural population to have many narrow latent tuning curves, though we have 320

not yet addressed the dynamic stability of these ring shapes. 321

 322

.CC-BY-NC-ND 4.0 International licenseIt is made available under a
perpetuity.preprint (which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for this. http://dx.doi.org/10.1101/2019.12.19.883207doi: bioRxiv preprint first posted online Dec. 20, 2019;

https://paperpile.com/c/sJe6eV/BBhK8
https://paperpile.com/c/sJe6eV/asj8Z
http://dx.doi.org/10.1101/2019.12.19.883207
http://creativecommons.org/licenses/by-nc-nd/4.0/

16

 323

Figure 5 Embedding rings in higher dimensions a) In a framework where tuning curves are independent (left), single-unit (SU) responses depend 324
solely on how much the stimulus overlaps with SN tuning curves. We consider a case (right) where SN responses are the result of random projects of a 325
lower-dimensional set of latent tuning curves. b) View of a ring over a 3D slice of a hypersphere, showing the ring bending out of the plane created by 𝑥𝑥𝑛𝑛−1 326

and 𝑥𝑥𝑛𝑛into the dimension denoted by 𝑥𝑥1. The ring’s excursions into other dimensions are not visible. c) The eigenvalues of the RNN weight matrix, for a 327
ring lying in a 2D plane (left, top) and for a ring with excursions into five additional dimensions (left, bottom). The rank of the RNN weight matrix, determined 328
by the number of non-zero eigenvalues, matches the ring’s embedding dimension. d) The total ring length as a function of the embedding dimension, for 329
different widths of the latent tuning curves (denoted κ). 330

 331

Limitations of RNN dynamic capacity 332

 To address questions about the dynamic stability of rings with higher embedding dimensions, we must 333

first define an appropriate error metric. Measuring the drift of the network state at various initial conditions on the 334

ring, as done in previous figures to see whether the ring implemented the correct drift function, will not suffice, 335

since trajectories might fly off the ring after some time. We therefore introduce a metric referred to “deviation,” 336

illustrated in Fig. 6a. At various points in time for an RNN trajectory, we decode the current value of on the ring, 337

and then calculate what the RNN state should be given that value. The Euclidean distance between the RNN’s 338

actual state and where it should be on the ring provides the deviation at that point in time. We can sample the 339

deviation over time and from many initial conditions to get an average measure of how well the RNN 340

.CC-BY-NC-ND 4.0 International licenseIt is made available under a
perpetuity.preprint (which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for this. http://dx.doi.org/10.1101/2019.12.19.883207doi: bioRxiv preprint first posted online Dec. 20, 2019;

http://dx.doi.org/10.1101/2019.12.19.883207
http://creativecommons.org/licenses/by-nc-nd/4.0/

17

approximates the desired dynamics over the ring. One result of this analysis is the finding that the network must 341

be sufficiently large (Fig. 6b). Our method thus allows us to find the smallest network size capable of creating 342

dynamics over a particular ring. 343

 We next examine the limits introduced by the geometry of the ring and the demands of the drift function. 344

First, we ask whether there is a connection between the embedding dimension and the number of fixed points. 345

Are there symmetries in ring structure than can be exploited to make certain drift functions easier? We find that 346

placing the fixed points of the drift function at the peaks of the latent tuning curves makes the RNN activity more 347

stable on the ring (Fig. 6c). Specifically, this means matching the number of fixed points with the number of 348

“bends” in the ring, which is two less than the embedding dimension. 349

Taking this finding into consideration, we examine the effect of tuning curve width given matched fixed 350

points and embedding dimension. We find that there are optimal values of κ that depend on the other parameters 351

(Fig. 6d). As the embedding dimension increases, the optimal κ also increases, meaning that higher-dimensional 352

rings require narrower tuning curves for stability. However, this is only true up to a point: making the latent curves 353

too narrow makes the networks less stable. 354

With these findings, we can make some normative statements. From an information theory perspective, 355

we might assume that higher-dimensional rings with narrower tuning curves are better for encoding a stimulus 356

value. However, this configuration might make it difficult to create stable dynamics. We have found that the most 357

dynamically stable rings have symmetry between the number of fixed points and the embedding dimension, and 358

the latent tuning curves forming those rings have an optimal width. 359

.CC-BY-NC-ND 4.0 International licenseIt is made available under a
perpetuity.preprint (which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for this. http://dx.doi.org/10.1101/2019.12.19.883207doi: bioRxiv preprint first posted online Dec. 20, 2019;

http://dx.doi.org/10.1101/2019.12.19.883207
http://creativecommons.org/licenses/by-nc-nd/4.0/

18

 360

Figure 6 Constraints on network performance a) Illustration of the deviation metric used to quantify network performance (top). Two examples of a 361
network with high deviation (bottom left) and a network with low deviation (bottom right). b) Influence of number of units in the network on the deviation 362
from the ring. For all networks simulated here, embedding dimension was 6 and the number of fixed points was 4. c) Deviation as a function of number 363
of fixed points and embedding dimension. Darker shading indicates higher deviation d) Logarithmic plot of deviation as a function of latent tuning curve 364
width, assuming embedding dimension and number of fixed points are matched. 365

.CC-BY-NC-ND 4.0 International licenseIt is made available under a
perpetuity.preprint (which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for this. http://dx.doi.org/10.1101/2019.12.19.883207doi: bioRxiv preprint first posted online Dec. 20, 2019;

http://dx.doi.org/10.1101/2019.12.19.883207
http://creativecommons.org/licenses/by-nc-nd/4.0/

19

Discussion 366

We have developed a method, EMPJ, for synthesizing RNNs that perform computations by implementing 367

specific task-relevant dynamics. EMPJ works by specifying local constraints on the dynamics, resulting in the 368

desired global behavior. The key innovation in EMPJ is that it derives the network connectivity directly from a set 369

of linear equations given by those constraints. We demonstrated the utility of this technique in the context of a 370

simple working memory task in which the network dynamics were specified by a drift diffusion process over a 371

ring-shaped manifold. The flexibility of EMPJ enabled us to implement a variety of drift functions over the ring 372

accurately. For example, we were able to create networks whose dynamics established drift functions with error-373

correcting properties in the presence of noise. 374

Moreover, we used EMPJ to generate networks whose dynamics can be flexibly adjusted by an input. 375

This opens the possibility of creating models of neural systems that perform context-dependent sensorimotor 376

and cognitive computations. We used this approach to model how thalamo-cortical inputs might adjust the speed 377

with which cortical dynamics evolve, as has been suggested by recent findings [13], [30]. However, unlike end-378

to-end training methods [13], EMPJ enabled us to straightforwardly synthesize RNNs in which an input drove 379

the system to different regions of state space with different drift functions. Although we focused on simple control 380

via tonic inputs, future work should be able to extend EMPJ to incorporate richer time-varying inputs, such as 381

pulses or oscillations, to accommodate more sophisticated control mechanisms. 382

One question that deserves further consideration is how to choose appropriate target dynamics for the 383

network. In our case, we were able to engineer the target dynamics based on the computational demands of the 384

task we considered. In general, it might be difficult to engineer such simple solutions for complex tasks whose 385

computations involve higher-dimensional manifolds. This problem may be solved by integrating our method with 386

other techniques that furnish the target dynamics. One option would be using Jacobians estimated from neural 387

spiking data recorded from an animal trained to solve the task [31]. Another option is to take Jacobians from an 388

auxiliary artificial neural network that contains task-relevant dynamics [32]. These methods would generate target 389

dynamics from a system able to solve the task, which could then be used with EMPJ to directly engineer an RNN 390

with those dynamics. 391

.CC-BY-NC-ND 4.0 International licenseIt is made available under a
perpetuity.preprint (which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for this. http://dx.doi.org/10.1101/2019.12.19.883207doi: bioRxiv preprint first posted online Dec. 20, 2019;

https://paperpile.com/c/sJe6eV/26LYi
https://paperpile.com/c/sJe6eV/4g2Wq
https://paperpile.com/c/sJe6eV/26LYi
https://paperpile.com/c/sJe6eV/0Vi5I
https://paperpile.com/c/sJe6eV/l4AgQ
http://dx.doi.org/10.1101/2019.12.19.883207
http://creativecommons.org/licenses/by-nc-nd/4.0/

20

As described, EMPJ provides the means for embedding a task parameter manifold directly into an RNN. 392

The approach is similar to that described by the Neural Engineering Framework (NEF), which also matches 393

latent task dimensions to latent neural dimensions and creates a recurrent weight matrix that produces the 394

desired transformations of neural representations [20]. One point of contrast is that EMPJ only requires knowing 395

local linear approximations of dynamics, while the NEF involves specifying the global dynamics equations. This 396

could be advantageous for if the global equations are unknown, but might be disadvantageous if the dynamics 397

are fast enough that linear approximations no longer work. Additionally, population manifolds created through 398

EMPJ are inherently designed to be stable, since we specify that off-manifold activity rapidly decays. The NEF 399

does not use Jacobian matrices, so the local stability is not as well-defined over the manifold. Our approach also 400

makes it easier to create networks for which the latent task manifold is embedded nonlinearly in the neural 401

manifold. Given these differences, we present EMPJ as a complementary technique to the NEF, as it shares the 402

same underlying principles. 403

EMPJ can also be contrasted with other RNN synthesis methods. For example, one might test the degree 404

to which the connectivity matrix resulting from EMPJ matches predictions from other approaches that relate 405

connectivity to low-dimensional dynamics. Two recent examples of such work are based on mean field theory 406

[21] and distributions of network motifs [33]. Generally, the connectivity matrices found through EMPJ may be 407

different from those found through mean-field methods. This is possibly because mean-field methods rely on the 408

properties of the distribution from which the connectivity matrix weights are drawn, while the weights found 409

through EMPJ are less constrained. As a result, we have been able to use EMPJ to create RNNs with low-410

dimensional dynamics that are difficult to achieve using mean-field methods (not shown). Further study could 411

elucidate the principles by which connectivity constrains dynamics. 412

 A larger goal of analyzing and synthesizing RNNs is to gain a deeper understanding of the relationship 413

between manifold geometry, complexity of dynamics, and network characteristics. EMPJ makes it easy to 414

generate and test hypotheses about those properties. For example, we used EMPJ to assess how the 415

dimensionality of the manifold and the organization of fixed points impact the ease of implementing different drift 416

functions. Future work could extend this work to further investigate general properties of network models such 417

as capacity [34] and manifold smoothness [35]. 418

.CC-BY-NC-ND 4.0 International licenseIt is made available under a
perpetuity.preprint (which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for this. http://dx.doi.org/10.1101/2019.12.19.883207doi: bioRxiv preprint first posted online Dec. 20, 2019;

https://paperpile.com/c/sJe6eV/e1pj2
https://paperpile.com/c/sJe6eV/rKD4A
https://paperpile.com/c/sJe6eV/ySZBP
https://paperpile.com/c/sJe6eV/iFo65
https://paperpile.com/c/sJe6eV/lAvaC
http://dx.doi.org/10.1101/2019.12.19.883207
http://creativecommons.org/licenses/by-nc-nd/4.0/

21

Methods 419

Additional method details 420

 The first step in EMPJ is to define some number of setpoints on a manifold. The exact number does not 421

matter, but the sampling should be sufficiently dense that it is possible to interpolate the drift function between 422

points. The next step is to define both the direction and magnitude of the target vector field over the manifold. 423

This is referred to as the “drift function” previously. The gradient of this vector field is used to define the Jacobian 424

at every point. 425

 The next step is to project the points on the manifold and the vector field gradient into a high-dimensional 426

space. In our method, we accomplish this by performing the Gram-Schmidt process on a set of Gaussian vectors 427

to obtain our “projection vectors.” These vectors can be scaled by some amount to take advantage of the full 428

dynamic range of the network units. For example, we find that scaling these projection vectors so that only a few 429

of the single units ever get close to saturation works well. 430

 Once the Jacobian is determined at each setpoint, we stack the constraints given by equation (4) to 431

produce equation (6), creating a linear equation of the following form: 432

 433

Note that 𝜉𝜉 denotes a matrix of white noise (𝜎𝜎 = 10−6 in all cases unless noted otherwise) the same size as A, 434

which helps to prevent overfitting and creates a more robust solution. Thus, by placing local constraints on the 435

connectivity matrix, we find a connectivity matrix for a network that has the desired global behavior. 436

For solving the linear equation, we used the least-squares solver from the NumPy linear algebra library. 437

 438

Ring attractor example 439

For the semi-discrete ring attractor, we first created a ring by taking the cosine and sine of 64 evenly 440

spaced values of a parameter 𝜃𝜃 between 0 and 2𝜋𝜋. This yields a list of coordinates on a unit circle. We then 441

projected those points into a 400-dimensional space using two projection vectors, as described in the previous 442

section. The projection vectors were each scaled to have a magnitude of 10. 443

Next, we needed to define the Jacobian at each setpoint. Since the ring is a locally 1-dimensional object, 444

we only need to worry about defining one eigenvector and corresponding eigenvalue at each point. We obtained 445

.CC-BY-NC-ND 4.0 International licenseIt is made available under a
perpetuity.preprint (which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for this. http://dx.doi.org/10.1101/2019.12.19.883207doi: bioRxiv preprint first posted online Dec. 20, 2019;

http://dx.doi.org/10.1101/2019.12.19.883207
http://creativecommons.org/licenses/by-nc-nd/4.0/

22

the eigenvectors by computing the tangent vector to the ring, using the fact that the tangent vector for a ring at 446

a point specified by the coordinates (cos𝜃𝜃, sin𝜃𝜃) has the direction (-sin𝜃𝜃, cos𝜃𝜃). The eigenvalues were determined 447

by taking the derivative of a drift function of the form f(𝜃𝜃) = -cos(𝜔𝜔𝜔𝜔), where the frequency 𝜔𝜔 is equal to the 448

number of stable fixed points around the ring. Thus, the eigenvalues were determined by the equation 𝜆𝜆(𝜃𝜃)= 449

𝜔𝜔sin=(𝜔𝜔𝜔𝜔). 450

To measure how well the network matched the desired drift function, we initialized the network at points 451

around the ring and measured how the decoded values of 𝜃𝜃 changed during the first time step of simulation. To 452

decode the value, we used least squares linear regression to decode the cosine and sine of 𝜃𝜃, which we used 453

to reconstruct 𝜃𝜃. In other words, we solved for the matrix D in the equation 8 for known values of . 454

 455

 456

 457

 458

Additional constraints 459

Since the Jacobian eigenvalues specify the derivative of the drift function, there is an integration constant 460

that is not accounted for when obtaining the actual drift function. We can impose constraints on this value by 461

constraining where the drift function crosses zero. Since zero-crossings of the drift function are by definition fixed 462

points, we can do this by setting equation (1) equal to zero, which gives the following: 463

 464

where 𝑥𝑥𝑓𝑓 refers to the fixed point. This provides another linear constraint, which can be added to the list of other 465

constraints in equation (6): 466

 467

 468

 469

.CC-BY-NC-ND 4.0 International licenseIt is made available under a
perpetuity.preprint (which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for this. http://dx.doi.org/10.1101/2019.12.19.883207doi: bioRxiv preprint first posted online Dec. 20, 2019;

http://dx.doi.org/10.1101/2019.12.19.883207
http://creativecommons.org/licenses/by-nc-nd/4.0/

23

 This procedure allows us to achieve the results in Fig. 2c. 470

 471

Bias/variance comparison 472

To verify that our RNN model behaved like the drift-diffusion model (DDM) it was designed to implement, 473

we simulated the target DDM over the one-dimensional parameter 𝜃𝜃. The change in 𝜃𝜃 is determined by the 474

following stochastic ordinary differential equation: 475

 476

 477

 478

where G(𝜃𝜃) is the deterministic drift function and dW represents a Wiener process that introduces Gaussian 479

noise at every timestep, scaled by the standard deviation . 480

 To compare the models, we used a sinusoidal drift function with a maximum value of 0.2 rad/s and a 481

noise standard deviation of 0.2. The frequency determined the number of fixed points of the drift function, and 482

we tested values of 0, 2, 4, 6, and 8. Note that setting the frequency to 0 results in a completely flat drift function, 483

effectively creating infinite fixed points. We simulated the two models 30 times each for 18 different initial 484

conditions. The timestep was set to 50 ms for the DDM, and each trial was simulated for 15 seconds. 485

 As we were interested in exploring the usefulness of semi-discrete representations, we compared the 486

average bias and variance of the model estimates at the end of the simulation time. The variance and bias 487

metrics are computed as follows, averaging over the initial values of 𝜃𝜃. 488

 489

 490

 491

 492

 493

Input control 494

.CC-BY-NC-ND 4.0 International licenseIt is made available under a
perpetuity.preprint (which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for this. http://dx.doi.org/10.1101/2019.12.19.883207doi: bioRxiv preprint first posted online Dec. 20, 2019;

http://dx.doi.org/10.1101/2019.12.19.883207
http://creativecommons.org/licenses/by-nc-nd/4.0/

24

 Our approach of controlling the network’s behavior with inputs relies on the ability to navigate a null space 495

such that the dynamics governing the output change in a desired way. We achieve this by balancing out the 496

input along a particular axis with an equivalent decay. This can be explained with some simple linear algebra. 497

 First, consider a dynamical system with state vector y. As discussed previously, we can use the Jacobian 498

matrix J to linearly approximate the system’s behavior around some point. We can then express the Jacobian 499

by its eigendecomposition. 500

 501

 502

 If the local dynamics are of rank m, and the eigenvalues and eigenvectors are written as and 503

respectively, we can see that changes in y are essentially the sum of dynamics along separate eigenvectors: 504

 505

Where refers to the projection of y onto the ith eigenvector. We now consider changes in a single dimension: 506

 507

The solution to this equation is simply an exponential function, where the eigenvalue determines the exponent. 508

 509

We will consider the case where the eigenvalue is a constant negative value. In that case, the system’s projection 510

in this dimension will decay towards zero. This means that zero is a stable fixed point for that dimension. 511

 512

However, if we add a tonic input that projects along that dimension, we can change the system’s behavior. Now, 513

the differential equation is the following: 514

 515

.CC-BY-NC-ND 4.0 International licenseIt is made available under a
perpetuity.preprint (which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for this. http://dx.doi.org/10.1101/2019.12.19.883207doi: bioRxiv preprint first posted online Dec. 20, 2019;

http://dx.doi.org/10.1101/2019.12.19.883207
http://creativecommons.org/licenses/by-nc-nd/4.0/

25

The solution to this equation is still exponential decay, but if we solve for the fixed point there is now a different 516

long-term behavior: 517

 518

 519

 520

This means that the stable fixed point along the dimension is now at I/a, rather than zero. This means that 521

introducing a tonic input as described will cause the system to shift to a different region of state space where the 522

projection onto the ith eigenvector is I/a. 523

 We use this property to our advantage in the text. We define an “input dimension” that is orthogonal to 524

the ring. This creates a cylinder-shaped manifold. Instead of just specifying the drift function around one ring, we 525

define it for several rings that lie on the cylinder. Since the maximum drift speed smoothly increases as we move 526

up the cylinder, tonic inputs that push the network state in that dimension increase the drift speed. The choice of 527

increasing drift speed with the tonic input is arbitrary. 528

 For our simulations, we set the eigenvalue corresponding to decay along the cylinder to -1. The rings 529

were scaled to have a radius of 8, and rings corresponding to different input levels were 6 units of distance apart. 530

 531

Constructing high-dimensional rings 532

 We made several choices for how to embed a ring in a higher-dimensional space. As our goal was to 533

compare how well EMPJ works for rings of different dimensionality and geometry, we decided to 1) keep total 534

population activity constant across all conditions, and 2) use as few parameters as possible to define the ring. 535

 To achieve the latter, we thought of the ring in terms of latent tuning curves that cause the ring to bend 536

into different dimensions, and made the density and narrowness of these tuning curves the only parameters we 537

could change. The latent tuning curves consisted of unnormalized von Mises functions that reach a maximum of 538

½. We defined the centers of the latent tuning curves so that they were evenly spaced around the ring. A single 539

width parameter, κ, controlled the widths of all the tuning curves. Thus, for a ring with bends into d dimensions, 540

the equation for the jth tuning curve is given by the following: 541

.CC-BY-NC-ND 4.0 International licenseIt is made available under a
perpetuity.preprint (which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for this. http://dx.doi.org/10.1101/2019.12.19.883207doi: bioRxiv preprint first posted online Dec. 20, 2019;

http://dx.doi.org/10.1101/2019.12.19.883207
http://creativecommons.org/licenses/by-nc-nd/4.0/

26

 542

 543

 544

 To keep the total population activity constant, we thought of the ring as lying on a hypersphere, meaning 545

that the norm of the vector describing every point on the ring is constant. This allows us to consider latent tuning 546

curves in terms of hyperspherical coordinates. An n-dimensional hypersphere is a manifold embedded in (n+1)-547

dimensional space (e.g. the 2-dimensional surface of a 3-dimensional ball). Any point on that manifold can be 548

described by n coordinates: one planar angle that ranges from 0 to 2𝜋𝜋 and n-1 elevation angles that range from 549

0 to 𝜋𝜋 (Fig. S1a). The planar angle 𝜃𝜃 is the same as the parameter being “remembered” by the ring in the working 550

memory task. We consider the latent tuning curves to be projections of the elevation angles onto an axis 551

orthogonal to the plane corresponding to the planar angle (e.g. the vertical axis in Fig. S1a). The remainder of 552

the magnitude of the sphere’s radius is distributed to projections onto the two Euclidean axes defining the plane. 553

The result is that there are always two latent curves related to the sine and cosine of 𝜃𝜃, and then (n-2) latent 554

tuning curves with a von Mises shape (Fig. S1b). The sphere radius we used in our simulations was 12, which 555

we found causes only a few of the units in the network to have saturated firing rates when the ring coordinates 556

were embedded in the high-dimensional network state using normally distributed vectors. 557

 558

 559

.CC-BY-NC-ND 4.0 International licenseIt is made available under a
perpetuity.preprint (which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for this. http://dx.doi.org/10.1101/2019.12.19.883207doi: bioRxiv preprint first posted online Dec. 20, 2019;

http://dx.doi.org/10.1101/2019.12.19.883207
http://creativecommons.org/licenses/by-nc-nd/4.0/

27

Figure S1 Rings on hyperspheres a) Illustration of a 2-sphere, for which the surface is parametrized by a planar angle 𝜃𝜃 and one elevation angle 𝜙𝜙. 560
Latent tuning curves describe the projection of the ring onto the Euclidean axes of the sphere. b) Example of latent tuning curves for a 7-sphere embedded 561
in an 8-dimensional Euclidean space. The first six latent tuning curves contributing to the ring consist of equally spaced von Mises functions, while the last 562
two are the sine and cosine of the planar angle 𝜃𝜃, normalized to keep the norm constant at every point. 563

 564

Ring capacity 565

 To measure the ability of a network to approximate dynamics over a given ring, we defined an error metric 566

we refer to as deviation. We defined deviation as the average Euclidean distance between the network state 567

and the network state we would expect based on the decoded angle , averaged over time and initial conditions. 568

This is expressed by the following equation: 569

 570

 571

 572

 The first step for computing deviation is to decode the angle being represented by the network. This is 573

done as described previously in (8) and (9). We then use the known latent tuning curves to generate a network 574

state corresponding to that angle. For our measurements of deviation, we did this for 24 different initial 575

conditions on the ring and for 5 seconds of simulation time, sampling the trajectories every 0.1 seconds. It is 576

worth noting that the exact value of deviation is not necessarily meaningful, but it is useful for comparing different 577

networks. 578

 When measuring network capacity as a function of network size, we measured deviation for 10 different 579

networks. For each, we set the number of von Mises latent tuning curves to 4, the tuning curve width to 2, and 580

the number of fixed points to 4. Another relevant parameter was the standard deviation of regularization noise 581

added when finding the weight matrix, which we set to 1e-3. We tested network sizes of 100, 200, 300, 400, 500, 582

and 600 units. 583

 For measuring network capacity as a function of the number of the ring dimensionality, width of latent 584

tuning curves, and number of fixed points, we used a similar procedure, this time keeping the network size fixed 585

at 400 units and changing only the parameters of interest. 586

 587

.CC-BY-NC-ND 4.0 International licenseIt is made available under a
perpetuity.preprint (which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for this. http://dx.doi.org/10.1101/2019.12.19.883207doi: bioRxiv preprint first posted online Dec. 20, 2019;

http://dx.doi.org/10.1101/2019.12.19.883207
http://creativecommons.org/licenses/by-nc-nd/4.0/

28

Code 588

 Code for reproducing the results of this paper can be found at https://github.com/elipollock/EMPJ. 589

 590

Acknowledgements 591

M.J. was supported by a CRCNS grant funded through the NIH (NIMH: 1R01MH122025-01) and the 592

McGovern Institute. The authors wish to thank SueYeon Chung, Srdjan Ostojic, Ila Fiete, and Larry Abbott for 593

helpful comments and discussions. 594

 595

Competing Interests 596

 The authors declare no financial or non-financial competing interests. 597

.CC-BY-NC-ND 4.0 International licenseIt is made available under a
perpetuity.preprint (which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for this. http://dx.doi.org/10.1101/2019.12.19.883207doi: bioRxiv preprint first posted online Dec. 20, 2019;

http://dx.doi.org/10.1101/2019.12.19.883207
http://creativecommons.org/licenses/by-nc-nd/4.0/

29

References 598

1. Stevenson IH, Kording KP. How advances in neural recording affect data analysis. Nat Neurosci. 2011 599
Feb;14(2):139–42. 600

2. Saxena S, Cunningham JP. Towards the neural population doctrine. Curr Opin Neurobiol. 2019 Mar 601
13;55:103–11. 602

3. Shadlen MN, Kiani R. Decision making as a window on cognition. Neuron. 2013 Oct 30;80(3):791–806. 603

4. Ratcliff R, McKoon G. The diffusion decision model: theory and data for two-choice decision tasks. Neural 604
Comput. 2008 Apr;20(4):873–922. 605

5. Kato S, Kaplan HS, Schrödel T, Skora S, Lindsay TH, Yemini E, et al. Global brain dynamics embed the 606
motor command sequence of Caenorhabditis elegans. Cell. 2015 Oct 22;163(3):656–69. 607

6. Sohn H, Narain D, Meirhaeghe N, Jazayeri M. Bayesian Computation through Cortical Latent Dynamics. 608
Neuron [Internet]. 2019 Jul 15 [cited 2019 Jul 15];0(0). Available from: 609
http://www.cell.com/article/S0896627319305628/abstract 610

7. Whiteway MR, Butts DA. The quest for interpretable models of neural population activity. Curr Opin 611
Neurobiol. 2019 Aug 16;58:86–93. 612

8. Gao P, Trautmann E, Yu BM, Santhanam G, Ryu S, Shenoy K, et al. A theory of multineuronal 613
dimensionality, dynamics and measurement [Internet]. bioRxiv. 2017 [cited 2017 Nov 6]. p. 214262. 614
Available from: https://www.biorxiv.org/content/early/2017/11/05/214262 615

9. Doya K. Universality of Fully-Connected Recurrent Neural Networks. In: IEEE Transactions on Neural 616
[Internet]. 1993 [cited 2017 May 9]. Available from: 617
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.51.2137 618

10. Pandarinath C, O’Shea DJ, Collins J, Jozefowicz R, Stavisky SD, Kao JC, et al. Inferring single-trial neural 619
population dynamics using sequential auto-encoders. Nat Methods [Internet]. 2018 Sep 17; Available 620
from: https://doi.org/10.1038/s41592-018-0109-9 621

11. Rajan K, Harvey CD, Tank DW. Recurrent Network Models of Sequence Generation and Memory. 622
Neuron. 2016 Apr 6;90(1):128–42. 623

12. Mante V, Sussillo D, Shenoy KV, Newsome WT. Context-dependent computation by recurrent dynamics in 624
prefrontal cortex. Nature. 2013 Nov 7;503(7474):78–84. 625

13. Wang J, Narain D, Hosseini EA, Jazayeri M. Flexible timing by temporal scaling of cortical responses. Nat 626
Neurosci. 2018 Jan;21(1):102–10. 627

14. Cueva CJ, Wei X-X. Emergence of grid-like representations by training recurrent neural networks to 628
perform spatial localization [Internet]. arXiv [q-bio.NC]. 2018. Available from: 629
http://arxiv.org/abs/1803.07770 630

15. Sussillo D, Churchland MM, Kaufman MT, Shenoy KV. A neural network that finds a naturalistic solution 631
for the production of muscle activity. Nat Neurosci. 2015 Jul;18(7):1025–33. 632

16. Barak O. Recurrent neural networks as versatile tools of neuroscience research. Curr Opin Neurobiol. 633
2017 Jun 29;46:1–6. 634

17. Russo AA, Bittner SR, Perkins SM, Seely JS, London BM, Lara AH, et al. Motor Cortex Embeds Muscle-635
like Commands in an Untangled Population Response. Neuron [Internet]. 2018 Jan 26; Available from: 636

.CC-BY-NC-ND 4.0 International licenseIt is made available under a
perpetuity.preprint (which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for this. http://dx.doi.org/10.1101/2019.12.19.883207doi: bioRxiv preprint first posted online Dec. 20, 2019;

http://paperpile.com/b/sJe6eV/t2TQ2
http://paperpile.com/b/sJe6eV/t2TQ2
http://paperpile.com/b/sJe6eV/lY2c4
http://paperpile.com/b/sJe6eV/lY2c4
http://paperpile.com/b/sJe6eV/oKVcC
http://paperpile.com/b/sJe6eV/y0Kkh
http://paperpile.com/b/sJe6eV/y0Kkh
http://paperpile.com/b/sJe6eV/lZkvJ
http://paperpile.com/b/sJe6eV/lZkvJ
http://paperpile.com/b/sJe6eV/ugqcY
http://paperpile.com/b/sJe6eV/ugqcY
http://www.cell.com/article/S0896627319305628/abstract
http://paperpile.com/b/sJe6eV/NTlrl
http://paperpile.com/b/sJe6eV/NTlrl
http://paperpile.com/b/sJe6eV/lm3zs
http://paperpile.com/b/sJe6eV/lm3zs
http://paperpile.com/b/sJe6eV/lm3zs
https://www.biorxiv.org/content/early/2017/11/05/214262
http://paperpile.com/b/sJe6eV/JvNYh
http://paperpile.com/b/sJe6eV/JvNYh
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.51.2137
http://paperpile.com/b/sJe6eV/vIAmw
http://paperpile.com/b/sJe6eV/vIAmw
http://paperpile.com/b/sJe6eV/vIAmw
https://doi.org/10.1038/s41592-018-0109-9
http://paperpile.com/b/sJe6eV/jBj9C
http://paperpile.com/b/sJe6eV/jBj9C
http://paperpile.com/b/sJe6eV/suRW7
http://paperpile.com/b/sJe6eV/suRW7
http://paperpile.com/b/sJe6eV/26LYi
http://paperpile.com/b/sJe6eV/26LYi
http://paperpile.com/b/sJe6eV/W8Jab
http://paperpile.com/b/sJe6eV/W8Jab
http://arxiv.org/abs/1803.07770
http://paperpile.com/b/sJe6eV/0lU6x
http://paperpile.com/b/sJe6eV/0lU6x
http://paperpile.com/b/sJe6eV/FlQfa
http://paperpile.com/b/sJe6eV/FlQfa
http://paperpile.com/b/sJe6eV/zwCKo
http://paperpile.com/b/sJe6eV/zwCKo
http://dx.doi.org/10.1101/2019.12.19.883207
http://creativecommons.org/licenses/by-nc-nd/4.0/

30

http://dx.doi.org/10.1016/j.neuron.2018.01.004 637

18. Remington ED, Narain D, Hosseini EA, Jazayeri M. Flexible Sensorimotor Computations through Rapid 638
Reconfiguration of Cortical Dynamics. Neuron. 2018 Jun 6;98(5):1005–19.e5. 639

19. Sussillo D, Barak O. Opening the black box: low-dimensional dynamics in high-dimensional recurrent 640
neural networks. Neural Comput. 2013 Mar;25(3):626–49. 641

20. Eliasmith C, Anderson CH. Neural Engineering: Computation, Representation, and Dynamics in 642
Neurobiological Systems. MIT Press; 2004. 356 p. 643

21. Mastrogiuseppe F, Ostojic S. Linking Connectivity, Dynamics, and Computations in Low-Rank Recurrent 644
Neural Networks. Neuron [Internet]. 2018 Jul 26 [cited 2018 Jul 26];0(0). Available from: 645
http://www.cell.com/article/S0896627318305439/abstract 646

22. Remington ED, Egger SW, Narain D, Wang J, Jazayeri M. A Dynamical Systems Perspective on Flexible 647
Motor Timing. Trends Cogn Sci. 2018 Oct 1;22(10):938–52. 648

23. Strogatz S, Friedman M, Mallinckrodt AJ, McKay S. Nonlinear Dynamics and Chaos: With Applications to 649
Physics, Biology, Chemistry, and Engineering. Computers in Physics. 1994 Sep 1;8(5):532–532. 650

24. Zhang K. Representation of spatial orientation by the intrinsic dynamics of the head-direction cell 651
ensemble: a theory. J Neurosci. 1996 Mar 15;16(6):2112–26. 652

25. Panichello MF, DePasquale B, Pillow JW, Buschman TJ. Error-correcting dynamics in visual working 653
memory. Nat Commun. 2019 Jul 29;10(1):3366. 654

26. Chaudhuri R, Gerçek B, Pandey B, Peyrache A, Fiete I. The intrinsic attractor manifold and population 655
dynamics of a canonical cognitive circuit across waking and sleep. Nat Neurosci. 2019 Aug 12;1–9. 656

27. Yang GR, Joglekar MR, Song HF, Newsome WT, Wang X-J. Task representations in neural networks 657
trained to perform many cognitive tasks. Nat Neurosci [Internet]. 2019 Jan 14; Available from: 658
https://doi.org/10.1038/s41593-018-0310-2 659

28. Rigotti M, Barak O, Warden MR, Wang X-J, Daw ND, Miller EK, et al. The importance of mixed selectivity 660
in complex cognitive tasks. Nature. 2013 May 19;497:585. 661

29. Zhang K, Sejnowski TJ. Neuronal tuning: To sharpen or broaden? Neural Comput. 1999 Jan 1;11(1):75–662
84. 663

30. Stroud JP, Porter MA, Hennequin G, Vogels TP. Motor primitives in space and time via targeted gain 664
modulation in cortical networks. Nat Neurosci. 2018 Dec;21(12):1774–83. 665

31. Duncker L, Bohner G, Boussard J, Sahani M. Learning interpretable continuous-time models of latent 666
stochastic dynamical systems [Internet]. arXiv [stat.ML]. 2019. Available from: 667
http://arxiv.org/abs/1902.04420 668

32. DePasquale B, Cueva CJ, Rajan K, Escola GS, Abbott LF. full-FORCE: A target-based method for training 669
recurrent networks. PLoS One. 2018 Feb 7;13(2):e0191527. 670

33. Recanatesi S, Ocker GK, Buice MA, Shea-Brown E. Dimensionality in recurrent spiking networks: Global 671
trends in activity and local origins in connectivity. PLoS Comput Biol. 2019 Jul;15(7):e1006446. 672

34. Chung SY, Lee DD, Sompolinsky H. Classification and geometry of general perceptual manifolds. Physical 673
Review X [Internet]. 2018; Available from: 674
https://journals.aps.org/prx/abstract/10.1103/PhysRevX.8.031003 675

.CC-BY-NC-ND 4.0 International licenseIt is made available under a
perpetuity.preprint (which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for this. http://dx.doi.org/10.1101/2019.12.19.883207doi: bioRxiv preprint first posted online Dec. 20, 2019;

http://dx.doi.org/10.1016/j.neuron.2018.01.004
http://paperpile.com/b/sJe6eV/PXzD1
http://paperpile.com/b/sJe6eV/PXzD1
http://paperpile.com/b/sJe6eV/2Yq0k
http://paperpile.com/b/sJe6eV/2Yq0k
http://paperpile.com/b/sJe6eV/e1pj2
http://paperpile.com/b/sJe6eV/e1pj2
http://paperpile.com/b/sJe6eV/rKD4A
http://paperpile.com/b/sJe6eV/rKD4A
http://www.cell.com/article/S0896627318305439/abstract
http://paperpile.com/b/sJe6eV/EsVED
http://paperpile.com/b/sJe6eV/EsVED
http://paperpile.com/b/sJe6eV/FFuUJ
http://paperpile.com/b/sJe6eV/FFuUJ
http://paperpile.com/b/sJe6eV/Jz7lA
http://paperpile.com/b/sJe6eV/Jz7lA
http://paperpile.com/b/sJe6eV/AYmCg
http://paperpile.com/b/sJe6eV/AYmCg
http://paperpile.com/b/sJe6eV/ywPcI
http://paperpile.com/b/sJe6eV/ywPcI
http://paperpile.com/b/sJe6eV/iev2T
http://paperpile.com/b/sJe6eV/iev2T
https://doi.org/10.1038/s41593-018-0310-2
http://paperpile.com/b/sJe6eV/BBhK8
http://paperpile.com/b/sJe6eV/BBhK8
http://paperpile.com/b/sJe6eV/asj8Z
http://paperpile.com/b/sJe6eV/asj8Z
http://paperpile.com/b/sJe6eV/4g2Wq
http://paperpile.com/b/sJe6eV/4g2Wq
http://paperpile.com/b/sJe6eV/0Vi5I
http://paperpile.com/b/sJe6eV/0Vi5I
http://arxiv.org/abs/1902.04420
http://paperpile.com/b/sJe6eV/l4AgQ
http://paperpile.com/b/sJe6eV/l4AgQ
http://paperpile.com/b/sJe6eV/ySZBP
http://paperpile.com/b/sJe6eV/ySZBP
http://paperpile.com/b/sJe6eV/iFo65
http://paperpile.com/b/sJe6eV/iFo65
https://journals.aps.org/prx/abstract/10.1103/PhysRevX.8.031003
http://dx.doi.org/10.1101/2019.12.19.883207
http://creativecommons.org/licenses/by-nc-nd/4.0/

31

35. Stringer C, Pachitariu M, Steinmetz N, Carandini M, Harris KD. High-dimensional geometry of population 676
responses in visual cortex. Nature. 2019 Jul;571(7765):361–5. 677

 678

.CC-BY-NC-ND 4.0 International licenseIt is made available under a
perpetuity.preprint (which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for this. http://dx.doi.org/10.1101/2019.12.19.883207doi: bioRxiv preprint first posted online Dec. 20, 2019;

http://paperpile.com/b/sJe6eV/lAvaC
http://paperpile.com/b/sJe6eV/lAvaC
http://dx.doi.org/10.1101/2019.12.19.883207
http://creativecommons.org/licenses/by-nc-nd/4.0/

